

3D Printing in Aortic Surgery: The link from diagnosis to Surgical planning and Treatment

Dr Mattia Glauber

Centro Cardiotoracico Sant'Ambrogio MILANO

Rendering or Printing?

SIMULATION

Strategy to teach:

Technical Skills
Procedures
Operations
New Devices

Recreate similarity to reality

SIMULATION MODELS

- Animals and Cadavers reproduce a real anatomical scenario (not always available and difficult to reach)
- Virtual Reality is in an ongoing R&D phase
- 3D Printing opens a new scenario

IMAGING

- Integral part of surgical and transcatheter intervention
 - Plays an increasingly important role for preoperative surgical planning and for peri-procedural evaluation imaging guidance
 - In minimally invasive and transcatheter procedures, preoperative findings cannot be confirmed by direct visualization of the structures

Imaging

Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance

Paul Schoenhagen ^{1,2*}, Uma Numburi ¹, Sandra S. Halliburton ¹, Peter Aulbach ³, Martin von Roden ³, Milind Y. Desai ^{1,2}, Leonardo L. Rodriguez ², Samir R. Kapadia ², E. Murat Tuzcu ², and Bruce W. Lytle ²

¹Imaging Institute, Cleveland Clinic, Desk J-1 4, 9500 Euclid Avenue, Cleveland, OH, USA; ²Heart and Vascular Institute, Cleveland Clinic, Desk J-1 4, 9500 Euclid Avenue, Cleveland, OH, USA; and ³Siemens Health Care, Imaging and IT, Forchheim, Germany

Received 18 June 2010; accepted 3 August 2010; online publish-ahead-of-print 25 August 2010

IMAGING ANALYSIS

Open source softwares (ie Osyrix, VTK, 3D slicer, MITK

- Multi Planar reconstruction (MPR):

Data obtained from axial CT scan are reconstructed in any desired plan

- Maximum-intensity projection (MIP)

Create an image similar to conventional angiography Calcification will dominate the image appearance

- Volume rendered technique

Reconstruction of 3D images (better with contrast!)

3D Volume Rendering

/

CASE 1

75 yrs Severe symptomatic AS

PREVIOUS CABG:

LIMA LAD; RIMA-Ygraft-OM, safen vein-RInt

Uncontrolled Diabetes – COPD – Euroscore: 14.5

High risk for resternotomy

Operation: AVR via RT

CASE 2

45 yrs

Normal Bicuspid Aortic valve

Ascending Aortic aneurism (50 mm)

Familiar hystory of dissection

Ascending aortic replacement via MS

Pre operative Images

Pre operative Images (simulation)

CASE 3 70 yrs

Previous AAA Endovascular graft for aorto-iliac aneurysm

Chest pain: Penetrating atherosclerotic ulcers and aneurysm in Aortic Arch and Proximal Thoracic Descending Aorta

Operation:

FET and total arch replacement via MS

C.D., female, 23 y. Coarctation

- Reduced exercise tolerance during the last 2 years
- Recent diagnosis of Aortic Coarctation
- Admitted to another Institution for surgery
- Surgery declined due to "high risk", taking into account the unusual anatomy (CT scan)

CT scan: tight coarctation just distal to left carotid (left subclavian hypoplasia)

STL reconstruction (Mimics)

3D model (Materialise) (Heartflex material)

Planning Catheter Intervention

* Use covered stent to reduce the risk of dissection/rupture in a tight stenosis

Avoid occlusion of the carotid

Planning the strategy of the procedure

Single covered stent (39 mm CP) mounted on 2 balloons (BALT 10x40 mm)

2 wires into right subclavian and left carotid

3D model

3D model fluoro

Distal part of stent deployment

Full stent deployment

Hemodynamics: 60 mmHg gradient

Conventional angio

3DR angio

3D model simulation

Patient procedure

3D model simulation

Distal part of stent over dilation (BALT 18x40 mm)

Final result: no residual gradient

Conventional angio

3DR angio

PRE- Final result

Conclusions

 Simulation on 3D model proved to be extremely helpful for planning surgical and transcatheter intervention in complex aortic surgery

Thank you!