3D Printing in Aortic Surgery: The link from diagnosis to Surgical planning and Treatment

Dr Mattia Glauber

Centro Cardiotoracico Sant’Ambrogio
MILANO
Rendering or Printing?
Strategy to teach:

Technical Skills
Procedures
Operations
New Devices

Recreate similarity to reality
SIMULATION MODELS

- Animals and Cadavers reproduce a real anatomical scenario (not always available and difficult to reach)

- Virtual Reality is in an ongoing R&D phase

- 3D Printing opens a new scenario
IMAGING

• Integral part of surgical and transcatheter intervention

• Plays an increasingly important role for preoperative surgical planning and for peri-procedural evaluation imaging guidance

• In minimally invasive and transcatheter procedures, preoperative findings cannot be confirmed by direct visualization of the structures
Imaging

Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance

Paul Schoenhagen, Uma Numburi, Sandra S. Halliburton, Peter Aulbach, Martin von Roden, Milind Y. Desai, Leonardo L. Rodriguez, Samir R. Kapadia, E. Murat Tuzcu, and Bruce W. Lytle

1Imaging Institute, Cleveland Clinic, Desk J-1 4, 9500 Euclid Avenue, Cleveland, OH, USA; 2Heart and Vascular Institute, Cleveland Clinic, Desk J-1 4, 9500 Euclid Avenue, Cleveland, OH, USA; and 3Siemens Health Care, Imaging and IT, Forchheim, Germany

Received 18 June 2010; accepted 3 August 2010; online publish-ahead-of-print 25 August 2010
IMAGING ANALYSIS

Open source softwares (ie Osyrix, VTK, 3D slicer, MITK

- Multi Planar reconstruction (MPR):
 Data obtained from axial CT scan are reconstructed in any desired plan

- Maximum-intensity projection (MIP)
 Create an image similar to conventional angiography
 Calcification will dominate the image appearance

- Volume rendered technique
 Reconstruction of 3D images (better with contrast!)
3D Volume Rendering
OUR EXPERIENCE
OUR EXPERIENCE
OUR EXPERIENCE
OUR EXPERIENCE
CASE 1

75 yrs Severe symptomatic AS

PREVIOUS CABG:

LIMA LAD; RIMA-Ygraft-OM, safen vein-RInt

Uncontrolled Diabetes – COPD – Euroscore: 14.5

High risk for resternotomy

Operation: AVR via RT
MIMICS 19 di Materialise
MIMICS 19 di Materialise
MIMICS 19 di Materialise
MIMICS 19 di Materialise
CASE 2

45 yrs

Normal Bicuspid Aortic valve

Ascending Aortic aneurism (50 mm)

Familiar hystory of dissection

Ascending aortic replacement via MS
Pre operative Images
Pre operative Images (simulation)
CASE 3
70 yrs

Previous AAA Endovascular graft for aorto-iliac aneurysm

Chest pain: Penetrating atherosclerotic ulcers and aneurysm in Aortic Arch and Proximal Thoracic Descending Aorta

Operation:
FET and total arch replacement via MS
C.D., female, 23 y.
Coarctation

- Reduced exercise tolerance during the last 2 years
- Recent diagnosis of Aortic Coarctation
- Admitted to another Institution for surgery
- Surgery declined due to “high risk”, taking into account the unusual anatomy (CT scan)
CT scan: tight coarctation just distal to left carotid (left subclavian hypoplasia)
STL reconstruction (Mimics)

3D model (Materialise) (Heartflex material)
Planning Catheter Intervention

* Use covered stent to reduce the risk of dissection/rupture in a tight stenosis

* Avoid occlusion of the carotid
Planning the strategy of the procedure

Single covered stent (39 mm CP) mounted on 2 balloons (BALT 10x40 mm)
2 wires into right subclavian and left carotid
Distal part of stent deployment
Full stent deployment
Hemodynamics: 60 mmHg gradient

Conventional angio

3DR angio
3D model simulation

Patient procedure
3D model simulation

Patient procedure
Distal part of stent over dilation (BALT 18x40 mm)
Final result: no residual gradient

Conventional angio

3DR angio
Final result
Conclusions

• Simulation on 3D model proved to be extremely helpful for planning surgical and transcatheter intervention in complex aortic surgery.
Thank you!