Is it time to stent the ascending aorta?

Martin Czerny

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

The aorta displays heterogenity regarding developmental origin ²

- Neural crest
- Secondary heart field SMCs
- Secondary heart field MMCs

CT Angiography

From the first frame, segment aorta lumen

Schwartz, Czerny, Biomed Imag 2012

CT Angiography

Schwartz, Czerny, Biomed Imag 2012

Intraoperative view

Morphological correlate

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

Objective

To assess the extent of changes in aortic geometry induced by the dissection process by means of computed tomography angiography (CTA) obtained prior and after acute type A aortic dissection

Methods

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

Ideal clinical scenario

Alternative approaches- still experimental

Completion CT scan

Zimpfer, Czerny ATS 2006

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

day 0 day 5

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

Morphological correlate

Concept Prototype

Distal extension to cover to the level of the brachiocephalic trunk

Aortic valve

Perfusion

Covered to exclude entry

Describe any practical results achieved to date – ie., sales, profits, users, citations etc

1. The CT-feasibility study was conducted according to the population of 1196 patients with severe aortic stenosis screened for TAVI (J Card Surg 2014;29:371-376)

2. Novel device prototype was made using Symetis TAVI Valve and Cook thoracic stentgraft and was implanted into transparent 3D printed proximal aorta

Conclusions

Developing a single-unit endovascular device for simultaneous ascending and aortic valve is a question of time. A novel composite endovascular valved graft will extend the application of transcatheter techniques to patients denied TAVI due to a concomitant ascending aneurysm and those with acute type A dissection with high risk of mortality.

Summary

Thorough understanding of pathophysiology is key

Complexity is amplified as compared to distal aortic segments

A tube alone is not sufficient to treat the majority of patients

Efforts for a valved conduit are ongoing

Combining knowledge and technology will pave the way