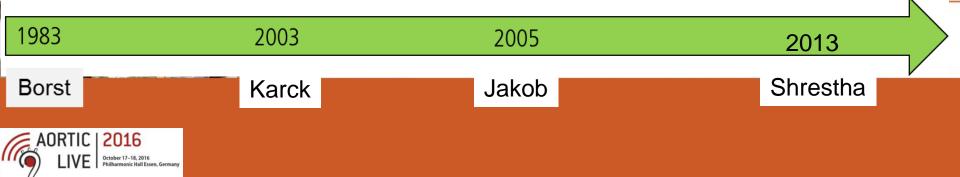
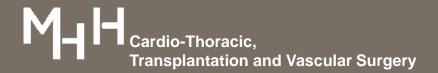


Cardiac, Thoracic, Transplantation and Vascular Surgery

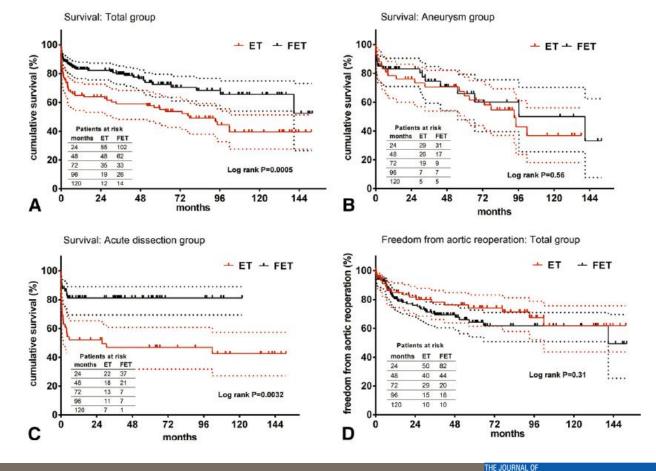

Total aortic arch replacement with the Thoraflex Hybrid Frozen Elephant Trunk Technique: The Hannover Experience.

Malakh Shrestha Hannover Medical School



Disclosures

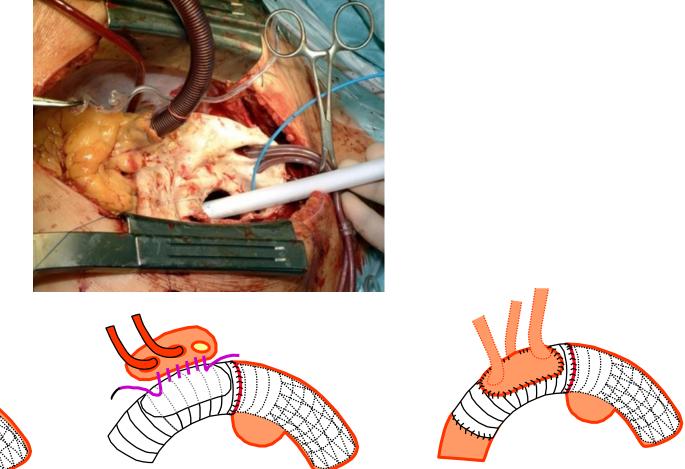

Consultant for Vascutek Terumo


The elephant trunk is freezing: The Hannover experience

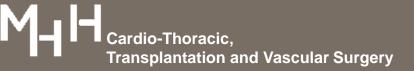
Malakh Shrestha, MBBS I A., Erik Beckmann, MD, Heike Krueger, RN, Felix Fleissner, MD, Tim Kaufeld, MD, Nurbol Koigeldiyev, MD, Julia Umminger, MD, Fabio Ius, MD, Axel Haverich, MD, Andreas Martens, MD

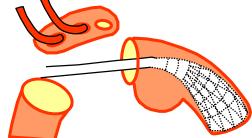
Philharmonic Hall Essen, Germany

AORTIC



Cardio-Thoracic, ^C Transplantation and


THORACIC AND CARDIOVASCULAR SURGERY


Transplantation and Vascular Surgery

'Frozen Elephant Trunk' Procedure

The frozen elephant trunk technique: a new treatment for thoracic aortic aneurysms. Karck M, Chavan A, Hagl C, Friedrich H, Galanski M, Haverich A. J Thorac Cardiovasc Surg. 2003 Jun;125(6):1550-3



Hannover Medical School 08/2001- 4/2016, FET n= 251.

Chavan Haverich (n=66)

Jotec E-vita (n=31)

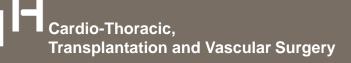
Vascutek Thoraflex (n=154)

Total aortic arch replacement with the frozen elephant trunk technique: 10-year follow-up single-centre experience[†]

Fabio Ius', Felix Fleissner', Maximilian Pichlmaier, Matthias Karck, Andreas Martens, Axel Haverich and Malakh Shrestha* European Journal of Cardio-Thoracic Surgery 44 (2013) 949–957 doi:10.1093/ejcts/ezt229 Advance Access publication 9 May 2013

Total aortic arch replacement with a novel four-branched frozen elephant trunk graft: first-in-man results⁺

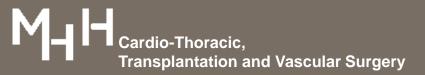
Malakh Shrestha*, Maximilian Pichlmaier, Andreas Martens, Christian Hagl, Nawid Khaladj and Axel Haverich

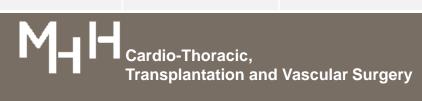

METHODS: From April 2010 to August 2011, 34 patients (25 males, age 60 ± 14 years) were operated on [14 aneurysms, 20 dissections (18 acute)]. Ten of these patients had undergone previous cardiac operations. The collapsed endoprosthesis was deployed in the descending aorta through the opened aortic arch. A sewing collar between the graft segments simplified the 'distal' anastomosis. The fourbranched graft segment allowed the replacement of the aortic arch and supra-aortic vessels individually. Concomitant procedures were performed if necessary.

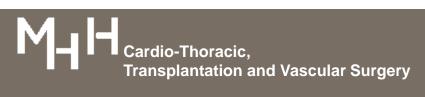
CONCLUSIONS: The graft adds to the 'frozen elephant trunk' concept for treating the arch and proximal descending aorta. Early experience demonstrates an excellent 30-day survival. Combining the frozen elephant with a four-branched arch graft increases the armament of the surgeon in the treatment of complex and diverse aortic arch pathology.

- · Consists of unstented Dacron & a stented (polyester and nitinol stent) parts
- Product Development Collaboration Hannover Medical School, Germany + Vascutek Terumo

- Un-stented part has 4 'fingers',
- The length of the stented part: 10 & 15 cms.
- The proximal unstented & distal stented parts are available in different sizes
- a sewing collar simplifies the suturing of distal anastomosis.
- Radio-opaque markers in the stented part.
- Fully Sealed Device




European Journal of Cardio-Thoracic Surgery Advance Access published May 31, 2012
European Journal of Cardio-Thoracic Surgery 0 (2012) 1-5
ORIGINAL ARTICLE
ORIGINAL ARTICLE


Preoperative Data	All	Chavan-Haverich	Jotec	Thoraflex	P value
Patients	251	66	31	154	0.232
male gender	175 (70%)	48 (73%)	25 (81%)	102 (66%)	0.232
Age, y	63 (50-70)	63 (49-70)	64 (54-70)	62 (50-70)	0.847
<u>Diagnosis</u>					
Aneurysm	82 (33%)	19 (29%)	11 (35%)	52 (21%)	0,723
AADA	100 (40%)	18 (27%)	15 (48%)	67 (44%)	0,046
CADA	69 (27%)	29 (44%)	5 (16%)	35 (23%)	0.002
Marfan-Syndrome	21 (8%)	9 (14%)	2 (6%)	10 (6%)	0.247
Redo	67 (27%)	25 (38%)	7 (23%)	35 (23%)	0.061
Malperfusion	35 (14%)	4 (6%)	5 (16%)	26 (17%)	0.302
cerebral	17 (7%)	0	4 (13%)	13 (8%)	0.106
Abdominal	11 (4%)	0	1 (3%)	10 (6%)	0.474
lower limb	22 (9%)	4 (6%)	2 (6%)	16 (10%)	0.693

Diagnosis	Perioperative Data	All n=82	Thoraflex n=52
Aneurysm	Operation time, min	315 (267-360)	310 (267-355)
	Cardiopulmonary Bypass time, min	196 (165-248)	196 (163-235)
	Cardiac ischemia time, min	100 (65-127)	81 (58-112)
	SACP, min	64 (50-89)	78 (56-92)
	Beating heart	37 (45%)	37 (71%)
	concomitant procedure	42 (51%)	26 (50%)
	CABG	23 (28%)	15 (29%)
	AV Replacement	10 (12%)	5 (10%)
	AV Reconstruction	12(15%)	8 (15%)
3	David	11 (13%)	8 (15%)

	Postoperative Data	All n=82	Thoraflex n=52
Ak	prolonged ventilation (>96h)	14 (17%)	6 (12%)
	ICU stay, d	4 (2-9)	4 (3-11)
	Rethoracotomy (bleeding)	13 (16%)	7 (13%)
No.	Recurrent nerve palsy	13 (16%)	5 (10%)
	Acute Kidney Injury	16 (20%)	12 (23%)
Aneurysm	<u>Dialysis</u>	13 (16%)	10 (19%)
	permanent	1 (1%)	1 (2%)
	<u>Paraparesis</u>	5 (6%)	5 (10%)
	permanent	3 (4%)	3 (6%)
	Stroke	11 (13%)	7 (13%)
	In hospital mortality	14 (17%)	8 (15%)

Market Handreic, Transplantation and Vascular Surgery

1
THE
Sec.
7
No.
67

Aneurysm

Follow-up data	All n=82	Thoraflex n=52	
Patients in follow-up	72 (87.8%)	47 (90.4%)	
follow-up, y	2.26 (0.37-5.19)	0.71 (0.13-2.48)	
Aortic reoperation	21 (26%)	12 (23%)	
Time to reoperation, d	151 (13-289)	129 (16-282)	
<u>Open surgical</u>	9 (11%)	5 (10%)	
Thoracoabdominal	3 (4%)	2 (4%)	
Descending Aorta	1 (1%)	1 (2%)	
Abdominal/iliac	4 (5%)	4 (8%)	
Endovascular	12 (15%)	7 (13%)	
Reoperation Status			
planned	1 (1%)	1 (2%)	
unplanned	20 (24%)	11 (21%)	
6 A, 2016 Hall Essen, Germany			

Diagnosis	Perioperative Data	All n=100	Thoraflex n=67
ľ	Operation time, min	375 (314-436)	389 (334-436)
	Cardiopulmonary Bypass time, min	261 (208-293)	267 (216-295)
	Cardiac ischemia, min	118 (75-164)	102 (60-146)
	SACP, min	85 (63-103)	95 (77-116)
	Beating heart	43 (43%)	43 (64%)
	concomitant procedure	72 (72%)	52 (78%)
AADA	Aortic root Reconstruction	28 (28%)	18 (17%)
	CABG	11 (11%)	8 (12%)
	AV Replacement	20 (20%)	11 (16%)
	AV Reconstruction	48 (48%)	38 (57%)
	David	31 (31%)	26 (39%)
	Yacoub	6 (6%)	3 (4%)

	Postoperative Data	All n=100	Thoraflex n=67
K	prolonged ventilation (>96h)	27 (27%)	18 (17%)
•	ICU stay, d	5 (3-10)	5 (3-10)
	Rethoracotomy (Bleeding)	19 (19%)	13 (19.5%)
	Recurrent nerve palsy	17 (17%)	13 (19.5%)
	Acute Kidney Injury	21 (21%)	11 (16%)
AADA	<u>Dialysis</u>	17 (17%)	11 (16%)
	permanent	3 (3%)	2 (3%)
	<u>Paraparesis</u>	6 (6%)	3 (4%)
	permanent	1 (1%)	0
	Stroke	18 (18%)	3 (4%)
	In hospital mortality	12 (12%)	6 (9%)

	Follow-up data	
K	Patients in follow-up	
S	follow-up, y	
	Aortic reoperation	
	Time to reoperation, d	
	<u>Open surgical</u>	
	Thoracoabdominal	
AADA	Descending Aorta	
	Abdominal/iliac	
	Endovascular	
	Reoperation Status	
	planned	
	unplanned	
AORTIC 2016		

LIVE

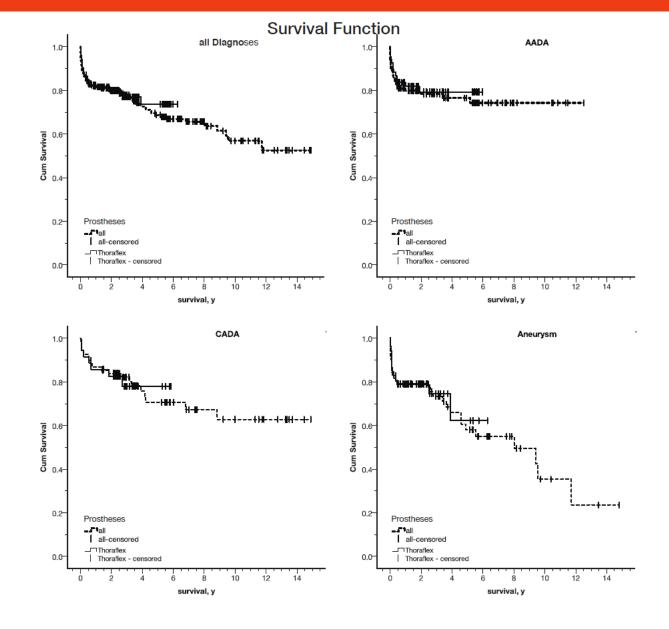
October 17–18, 2016 Philharmonic Hall Essen, Germany

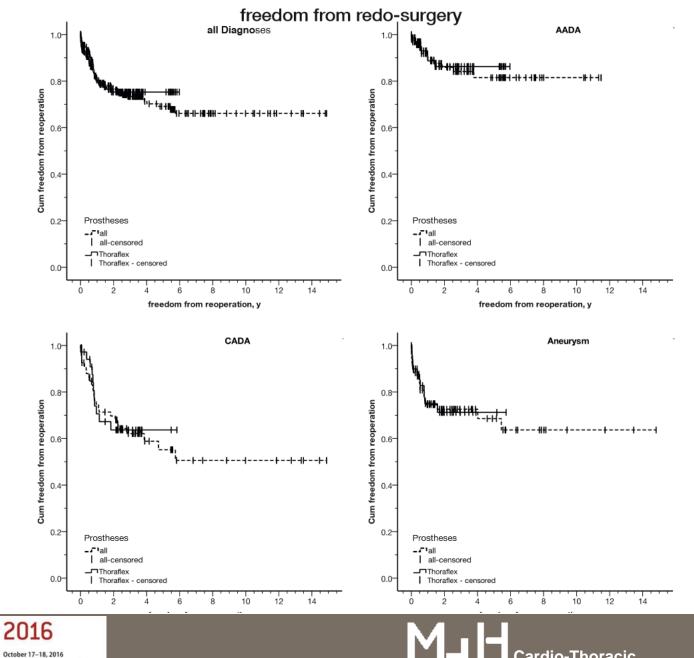
p data	All n=100	Thoraflex n=67
in follow-up	90 (90%)	62 (93%)
о, у	2.12 (0.50-4.65)	1.33 (0.46-2.84)
operation	12 (12%)	7 (10%)
reoperation, d	218 (92-521)	218 (92-361)
<u>surgical</u>	10 (10%)	5 (7%)
coabdominal	2 (2%)	1 (2%)
ending Aorta	1 (1%)	1 (2%)
minal/iliac	3 (3%)	2 (3%)
ascular	5 (5%)	3 (4%)
ation Status		
d	1 (1%)	1 (2%)
ined	12 (12%)	6 (9%)
	M.IJ	

Diagnosis	Perioperative Data	All n=69	Thoraflex n=35
	Operation time, min	397 (336-441)	410 (332-449)
S P	Cardiopulmonary Bypass time, min	234 (193-283)	234 (204-289)
	Cardiac ischemia time, min	129 (95-184)	120 (80-179)
	SACP, min	79 (61-102)	100 (83-118)
	Beating heart	20 (29%)	20 (57%)
CADA	<u>concomitant procedures</u>	30 (43%)	15 (43%)
	Aortic root Reconstruction	4 (6%)	1 (3%)
	CABG	8 (12%)	2 (6%)
	AV Replacement	16 (23%)	6 (17%)
	AV Reconstruction	7 (10%)	4 (11%)
	David	6 (9%)	3 (9%)
	Yacoub	1 (1%)	1 (3%)

	6
	Į

CADA

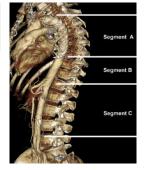

Postoperative Data	All n=69	Thoraflex n=35
prolonged ventilation (>96h)	18 (26%)	8 (23%)
ICU stay, d	6 (3-13)	6 (3-13)
Rethoracotomy (Bleeding)	14 (20%)	5 (14%)
Recurrent nerve palsy	18 (26%)	12 (34%)
Acute Kidney Injury	15 (22%)	9 (26%)
<u>Dialysis</u>	14 (20%)	8 (23%)
permanent	1 (1%)	1 (3%)
<u>Paraparesis</u>	3 (4%)	3 (9%)
permanent	0	
Stroke	7 (10%)	3 (9%)
In hospital mortality	3 (4%)	1 (3%)

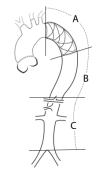

	Follow-up data	All n=69	Thoraflex n=35
	Patients in follow-up	67 (97.1%)	35 (100%)
	follow-up, y	2.92 (1.24-6.84)	1.82 (0.67-2.83)
	Aortic reoperation	26 (38%)	11 (31%)
	Time to reoperation, d	281 (124-666)	281 (209-345)
	<u>Open surgical</u>	17 (25%)	6 (17%)
	Thoracoabdominal	11 (16%)	3 (9%)
CADA	Descending Aorta	3 (4%)	2 (6%)
	Abdominal/iliac	2 (3%)	2 (6%)
	Endovascular	9 (13%)	5 (14%)
	Reoperation Status		
	planned	1 (1%)	1 (3%)
	unplanned	25 (36%)	10 (29%)
AORTIC 2016		M.I.	

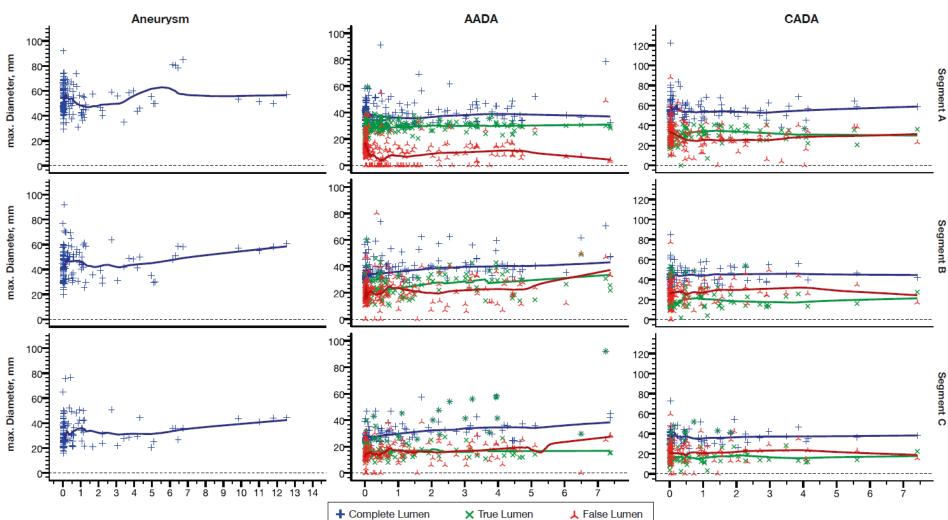
AORTIC LIVE Ctober 17-18, 2016 October 17-18, 2016 Philharmonic Hall Essen, Germany

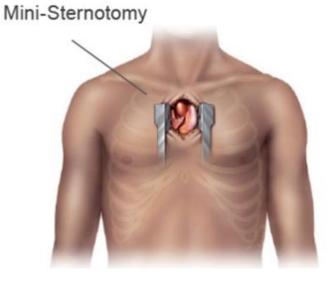
С

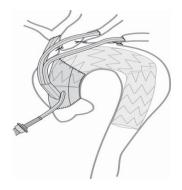
AORTIC LIVE Ctober 17-18, 2016 DCtober 17-18, 2016 Philharmonic Hall Essen, Germany

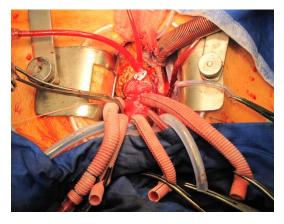

AORTIC


LIV

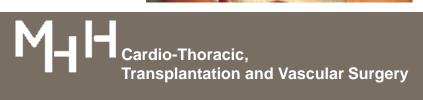

E

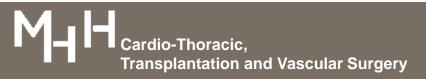

Philharmonic Hall Essen, Germany


Follow-up Aortic imaging







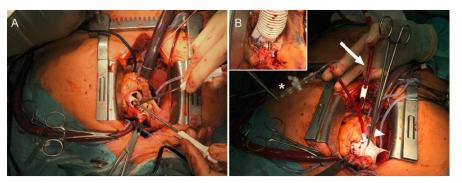


Good judgment comes from experience and experience comes from bad judgment.

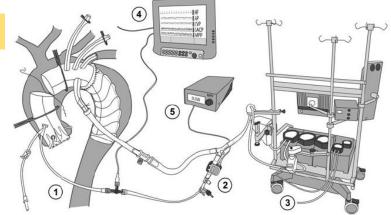
European Journal of Cardio-Thoracic Surgery Advance Access published February 10, 2015

European Journal of Cardio-Thoracic Surgery (2015) 1-9 doi:10.1093/ejcts/ezv009

Do not leave the heart arrested. Non-cardioplegic continuous myocardial perfusion during complex aortic arch repair improves cardiac outcome[†]


Andreas Martens^{*}, Nurbol Koigeldiyev, Erik Beckmann, Felix Fleissner, Tim Kaufeld, Heike Krueger, Detlev Stanelle, Jakob Puntigam, Axel Haverich and Malakh Shrestha

10/2010 - 10/2014, 144 patients


AORTIC

2016

October 17–18, 2016 Philharmonic Hall Essen, Germany

	CMP	CA	P-value
Total operation time (min)	363 ± 61	395 ± 87	0.0016
Cardiopulmonary bypass time (min)	242 ± 50	264 ± 68	0.046
Cardiac ischaemia time (min)	49 ± 32	149 ± 56	< 0.0001
Visceral ischaemia time (min)	55 ± 20	54 ± 31	0.847
Minimal oesophageal temperature (°C)	25 ± 1	25 ± 2	0.491
Selective antegrade cerebral perfusion time (min)	101 ± 29	101 ± 43	0.967

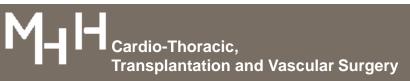
	СМР	CA	P-value
30-day mortality (n, %)	2 (6%)	23 (21%)	0.040
New onset PND (n, %)	3 (8%)	11 (10%)	1.000
SCI (n, %)	2 (6%)	5 (5%)	0.670
Recurrent nerve palsy (n, %)	5 (14%)	14 (13%)	1.000
Myocardial infarction (MI) (n, %)	0 (0%)	3 (3%)	0.573
Low cardiac output (n, %)	1 (3%)	24 (22%)	0.0052

Cardio-Thoracic, Transplantation and Vascular Surgery

AORTIC SURGERY

ORIGINAL ARTICLE

Conclusions I


- In selected patients with multi-segment aortic aneurysms, FET allows for a 'single stage ' therapy.
- In acute DeBakey type I aortic dissections, FET stabilizes the dissecting membrane and favours true lumen expansion.
- This can be "life-saving" in patients with malperfusion.
- FET graft favours false lumen thrombosis in both acute and chronic DeBakey type I aortic dissections.
- It offers an ideal landing zone for trans-femoral endovascular completion at a later stage.

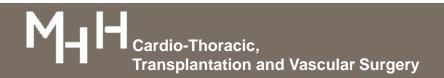
In acute and chronic aortic dissections, "excessively long" FET may increase the risk of spinal cord injury.

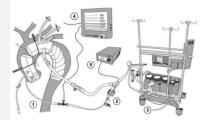
FET graft infection is extremely complex to treat and has dismal results.

FET technique is just one of the tools available to the surgeon to treat complex aortic arch disease.

Conclusion II

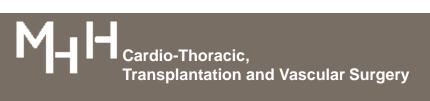
Modern peri-operative management techniques such as replacing the aortic arch on continuous perfused myocardium ('beating heart') reduces the perioperative risks.


•In Dissections, FET length of 10 centimeters beyond the left subclavian origin is sufficient to stabilize the intimal flap and to promote false lumen thrombosis.


•All patients after FET implantation warrant a strict follow-up including serial CT Scans.

•All necessary precautions should be undertaken to avoid FET graft infection.

The peri-operative risks after surgery of the aortic arch is mainly procedure dependent.



Thank you!

