

Imaging ascending and root

Rachel Clough, MD PhD

Division of Imaging Sciences and Biomedical Engineering King's College London

The arch and ascending aorta

Courtesy: Roy Greenberg

Arch, ascending and TAVI

Endovascular stent grafting for ascending aorta repair in high-risk patients

Eric E. Roselli, MD, Jahanzaib Idrees, MD, Roy K. Greenberg, MD, Douglas R. Johnston, MD, and Bruce W. Lytle, MD (J Thorac Cardiovasc Surg 2014; 1:1-11)

TABLE 3.	Operative details	
----------	--------------------------	--

Patient	Age	Gender	Indication	Appr.	Device(s)	Outcome	Details/events
1	91	M	Type A	TA	Gore, Medtronic	Late death	COD: unknown
2	56	F	Type A	TA	Cook	Endo Reintv	Type 1 endoleak \rightarrow TEVAR extension with talent
						Late death	COD: pneumonia
3	79	M	Type A	TF	Cook	Late death	COD: Lung cancer
4	75	F	Type A	TF	Gore	Acute death	Endoleak, rupture
5	82	F	Type A	TF	Cook	Acute death	LM coverage → open conversion, COD: multi-organ failure
6	51	F	Type A	TA	Cook	Alive	Early endolear
7	84	M	Type A	TA	Cook	Acute death	COD: bleeding
8	83	F	Type A	TA	Cook	Alive	Type 1 endole: 22 patients
9	79	M	Type A	TF	Gore	Endo, open reintv	
10	(0)		D.CT		C 1		later open re
10	69	F	IMH	TA	Cook	Alive	Definitive repair T_{1} (p. c. l. c. p. d. c. l. c. $(270/)$
11	81	F	IMH		Gore	Alive	Definitive repair Definitive repair PsendoA—Puir Type I endoleak: 6 (27%)
12	38	M	PseudoA	TAx	ASD + BMS	Open Reintv	PseudoA—Pul repair → ope
							Definitive repa
13	84	M	PseudoA	TF	Medtronic	Alive	Definitive repa Definitive repa Definitive repa
14	63	F	PseudoA	TF	Cook	Alive	Definitive repa
15	55	M	PseudoA	TAx	Cook	Open Reintv	PseudoA resol
							retrieval Do intervention. $(220/)$
16	73	Μ	PseudoA	TF	Cook	Alive	Definitive repa Re-intervention: 6 (32%)
17	63	M	PseudoA	TAx	Cook	Endo Reintv	Definitive repa
							definitive repair
18	64	M	PseudoA	TA	Cook	Alive	Definitive repair
19	88	Μ	PseudoA	TAx	Gore	Alive	Definitive repair
20	61	F	PseudoA	TF	Cook	Alive	Small endoleak, monitored
21	64	M	C.Dissection	TAx	Cook	Open Reintv	1. Retained delivery system → open conversion direct device
							fixation
							2. Late left ventricular apex pseudoaneurysm repair, definitive repair
22	74	F	C.Dissection	TF	Cook	Alive	Definitive repair

Appr., Approach for device delivery; *M*, male; *Type A*, acute type A dissection; *TA*, transapical; *COD*, cause of death; *F*, female; *Endo*, endovascular; *Reintv*, reintervention; *TEVAR*, thoracic endovascular aortic repair; *IMH*, intramural hematoma; *TF*, transfemoral; *LM*, left main coronary artery; *TAx*, transaxillary; *ASD*, atrial septal defect closure device; *BMS*, bare metal stent; *PseudoA*, pseudoaneurysm; *CT*, computed tomography; *C.Dissection*, chronic dissection.

Aortic motion

Respiratory

Quantification

Aortic displacement – cardiac motion

Aortic displacement – cardiac motion

20

Aortic displacement – respiratory motion

Comparison

Positional stability

Radial force of the stent graft

 $(F_R)_{rad} = f (Vessel_{m_r} Plaque_{m_r} Stent_{o_r} Blood_{p_r} Stent_m)$

- **Vessel**_m = vessel properties
- **Plaque**_m = plaque properties
- **Stent**_o = oversized stent graft
- **Blood**_p = blood pressure
- **Stent**_m = stent material properties

Positional stability

Radial force of the stent graft

 $(F_R)_{rad} = f(Vessel_m, Plaque_m, Stent_o, Blood_{p_r}, Stent_m)$

- **Vessel**_m = vessel properties
- **Plaque**_m = plaque properties
- **Stent**_o = oversized stent graft
- **Blood**_p = blood pressure
- **Stent**_m = stent material properties

Int J Comput Assist Radiol Surg. 2014;9:617-33

VESSEL WALL PROPERTIES

MR elastography

shear

- unbalanced forces
- shape is changed
- volume is NOT changed

Uy [µm]

MR elastography

MR elastography

STENT GRAFT OVER-SIZING

Sizing

- oversizing 10 - 25% - 2-3mm

18 % difference in diameter between systole to diastole

Radiology. 2011;260:591-8

Through-plane movement

Eur Radiol. 2011;21:36-45

Pulsatile distension - cardiac motion

Conclusion

- The aortic root and ascending aorta are highly dynamic structures
- Quantifying and understanding these aortic biomechanics could improve the outcome of these endovascular techniques and aid the development of patient-specific treatments