wellcome $^{\text {trust }}$

Imaging ascending and root

Rachel Clough, MD PhD

Division of Imaging Sciences and Biomedical Engineering
King's College London

The arch and ascending aorta

Courtesy: Roy Greenberg

Arch, ascending and TAVI

1

Endovascular stent grafting for ascending aorta repair in high-risk patients

Eric E. Roselli, MD, Jahanzaib Idrees, MD, Roy K. Greenberg, MD, Douglas R. Johnston, MD, and Bruce W. Lytle, MD (J Thorac Cardiovasc Surg 2014; :1-11)

[^0] TEVAR, thoracic endovascular aortic repair; $I M H$, intramural hematoma; $T F$, transfemoral; $L M$, left main coronary artery; TAx, transaxillary; ASD, atrial septal defect closure device; BMS, bare metal stent; PseudoA, pseudoaneurysm; CT, computed tomography; C.Dissection, chronic dissection.

Aortic motion

Cardiac

Respiratory

Quantification

Aortic displacement - cardiac motion

Aortic displacement - cardiac motion

Aortic displacement - respiratory motion

Comparison

Positional stability

Radial force of the stent graft

$$
\left(\mathrm{F}_{\mathrm{R}}\right)_{\text {rad }}=f\left(\text { Vessel }_{\mathrm{m}}, \text { Plaque }_{\mathrm{m}}, \text { Stent }_{\mathrm{o}}, \text { Blood }_{\mathrm{p}}, \text { Stent }_{\mathrm{m}}\right)
$$

Vessel $_{m}=$ vessel properties
Plaque $_{m}=$ plaque properties
Stent $_{\text {o }}=$ oversized stent graft
Blood $_{p}=$ blood pressure
Stent $_{\mathrm{m}}=$ stent material properties

Positional stability

```
Radial force of the stent graft
```



```
Vessel m = vessel properties
\mp@subsup{Plaque}{m}{m}= plaque properties
Stent. = oversized stent graft
\mp@subsup{Blood}{p}{}}
Stent }\mp@subsup{}{m}{}=\mathrm{ stent material properties
```


VESSEL WALL PROPERTIES

MR elastography

shear

- unbalanced forces
- shape is changed
- volume is NOT changed

Uy [$\mu \mathrm{m}]$

MR elastography

MR elastography

Time of aortic valve closure

$$
\lambda=32 \mathrm{~mm} \rightarrow \mathrm{c}_{\mathrm{s}}=\lambda * v=0.032 * 165=5.3 \mathrm{~m} / \mathrm{s}
$$

STENT GRAFT OVER-SIZING

Sizing

- oversizing 10-25\%
- 2-3mm

18 \% difference in diameter between systole to diastole

Through-plane movement

Pulsatile distension - cardiac motion

Conclusion

- The aortic root and ascending aorta are highly dynamic structures
- Quantifying and understanding these aortic biomechanics could improve the outcome of these endovascular techniques and aid the development of patient-specific treatments

[^0]: Appr., Approach for device delivery; M, male; Type A, acute type A dissection; TA, transapical; COD, cause of death; F, female; Endo, endovascular; Reintv, reintervention;

