

Department of Cardiothoracic & Vascular Surgery McGovern Medical School / The University of Texas Health Science Center at Houston

Open Thoracoabdominal Repair in Connective Tissue Disease Patient

Anthony L. Estrera, MD Professor and Chief of Cardiac Surgery

Department of Cardiothoracic and Vascular Surgery McGovern Medical School The University of Texas Science Center at Houston Memorial Hermann Heart & Vascular Institute

Disclosures

A. Estrera Consultant Gore

Marfan Syndrome FBN1 Mutations

Skeletal

Pectus deformities Reduced U/L segment Wrist and thumb sign Scoliosis

Ocular Ectopia Lentis

R247C Variant Alters Myosin Function but Does Not Cause Aortic Disease

In vitro assays- Sweeney lab (Penn), Aortic contractility- Stull lab (UTSW), Knockin model generation- Shao-Qing Kuang, PhD (UT Healt

ACTA2 Mutations

Responsible for 10 - 14% familial TAAD

No Marfan-like syndromic features

PDA and other vascular diseases Type A and B aortic dissections

ACTA2 Mutations: Early Onset Coronary Artery Disease and Moyamoya Disease

TGFBR2 and **TGFBR1** mutations: Variable spectrum of disease

Loeys-Dietz Syndrome

Marfan Syndrome

"Marfan syndrome type 2"

GenTac

NIH	National Heart, Lung,				Accessible Search Form			
and Blood Institute		ood Institute			NHLBI Entire S	ilte 🔻	SEARCH	
Public		Health Professionals	Researchers	Clinical Trials	News & Resources	About N	IHLBI	

Home * Researchers * Research Resources * National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC)

Researchers	National Registry of Genetically Triggered	Scientists are learning
FUNDING	Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC)	more every day about how genes play a role in our health.
TRAINING & CAREER DEVELOPMENT	Home About The Team Research VMore	Our genetic makeup, or DNA, can influence whether we have a higher or lower
DIVISION OF INTRAMURAL RESEARCH	The GenTAC Registry was established in 2006 to collect information from eligible patients with genetic conditions that predispose them for thoracic aortic aneurysms to assist physicians and researchers in understanding the link between genes, aortic aneurysms, and	risk of certain conditions, such as heart and cardiovascular disease.
RESEARCH RESOURCES	heart disease. The Registry includes de-identified medical data, clinical images, and biological samples of about 3,700 patients and is available for research at no cost to qualified investigators worldwide. The GenTAC Registry concluded in 2016. Several new	View GenTAC podcasts that highlight genetics, imaging and surgery
RESEARCH MEETING SUMMARIES	registries formed to continue longitudinal data collection on GenTAC cohort and to enroll additional patients. Information about these registries is available <u>here</u> .	options for thoracic aortic disease, and research done using GenTAC data,
TECHNOLOGY	If you wish to use GenTAC data, images or biological samples, apply here via the BioLINCC.	biospecimens or images.

Montalcino Aortic Consortium (MAC)

MAC Sites and Investigators

Inclusion criteria:

Any patient or family member with a pathogenic or non-benign variant in the known HTAD genes

MAC Houston Administrative Center

Contact the Study Coordinator: Ellen Hostetler Tel 713 500 6843 Email ellen.m.hostetler@uth.tmc.edu **United States** DM Milewicz, MD, PhD R Pyeritz, MD, PhD

A Braverman, MD SA Morris, MD **RB** Devereux, MD J Grima, PhD R Lacro, MD SA LeMaire, MD A Levin, MD

D Liang, MD, PhD

I Maumenee, MD R Moran, MD F Ramirez, PhD

P Robinson, MD

L Sakai, PhD D Sallee, MD S Shalhub, MD, MPH A Yetman, MD

MN Singh, MD ES Regalado, MS MA Hofmann Bowman, MD, PhD V McConnell, MD AM Crean, MD A Pitcher, MRCP, PhD J Bavaria, MD A Psychogios, MD V Kalahasti, MD

Europe

J De Backer, MD, PhD A De Paepe, MD, PhD

B Callewaert, MD, PhD M Renard, MSc, PhD L Muiño-Mosquera, MD G Jondeau, MD, PhD C Boileau, PhD F Labombarda, MD L Faivre, MD, PhD

C Bouleti, MD, PhD

O Milleron, MD Y von Kodolitsch M Rybczynski, MD

Z Szabolcs, MD PhD MSc E Arbustini, MD M Groenink, MD, PhD A Evangelista, MD G Teixido-Tura, MD, PhD B Carlberg, MD, PhD United Kingdom AH Child, MD

Canada

N Alvarez, BA, MD I El-Hamamsy, MD, PhD D Chitayat, MD B Fernandez, MD G Horne, MD, PhD N Poirier, MD D Reinhardt, PhD G Sandor, MD D Human BA, BM. BCh M Ouzounian, MD PhD Australia

L Ades, MD R Jeremy, MB BS PhD

Japan

H Morisaki, MD, PhD T Morisaki, MD, PhD

MAC Aims: Evidence-based Diagnosis and Management of HTAD

- Establish a large cohort of patients with mutations in the HTAD genes and collect patient data
- Define the natural and clinical history of HTAD
- Characterize the disease risk associated with the HTAD genes and mutations
- Identify factors that modify risk
- Make the MAC resource available to investigators for further research and drug and device trials
- Address classification of disease genes

HTAD Cases in MAC N = 987

Gene	Frequency
ACTA2	319 (32%)
PRKG1	37 (4%)
SMAD3	190 (19%)
TGFBR1	176 (18%)
TGFBR2	265 (27%)

Systemic features associated with TGFBR1 and TGFBR2 mutations

	TGFBR1	TGFBR2	р
Marfan systemic score mean (SD)	3.98 (3.44)	4.12 (2.94)	0.7
Systemic score >=7	28/128 (21.9%)	34/183 (18.6%)	0.6
Hypertelorism	36/138 (26%)	62/199 (31%)	0.3
Broad or bifid uvula	36/139 (26%)	72/219 (33%)	0.2
Arched palate	48/136 (35%)	109/229 (48%)	0.02
Craniosynostosis	11/118 (9%)	20/190 (11%)	0.8
Translucent skin	63/144 (43%)	78/227 (34%)	0.08
Wide scars	33/142 (23%)	62/218 (28%)	0.3
Head and neck arterial tortuosity	53/104 (51%)	72/133 (54%)	0.8
Cardiac defect (BAV, VSD, PDA)	13/154 (8.4%)	52/238 (21.8%)	<0.001
Mitral valve prolapse	36/156 (23%)	65/244 (27%)	0.5

Aortic Root Diameter at Surgery or Dissection (UTH data)

Does the Type of Aortic Event Differ Between Genes?

		FBN1	TGFBR1 ⁶	TGFBR2	ACTA2 ⁷	SMAD3
No	o. of individuals	243	176	265	277	190
Mean age (SD)		30 (16)			38 (20)	41 (17)
Aortic event		30%	40%	45%	48%	37%
	Aortic dissection	42%	50%	47%	88%	74%
	Type A [‡]	74%	89%	71%	61%	71%
	Mean Age	39 ± 9		34 ± 17	36 ± 12	44 ± 16
	Туре В	26%	11%	29%	24%	12%
	Mean Age	44 ± 10		38 ± 14	29 ± 12	53 yrs ± 15
Aneurysm repair		58%	50%	53%	12%	26%
	Mean Age	39 ± 13	33 ± 16	26 ± 16	33 ± 18	46 ± 17
Cumulative risk of aortic event		74% at 60 yrs	100% at 80 yrs	100% at 90 yrs	76% at 85 yrs	86% at 81 yrs

Connective Tissue Disorder

Genetically Triggered Aneurysm (GenTac)

Heritable Thoracic Aortic Disease (HTAD)

Although we don't own the patient, we should own the disease.

Differences in outcomes when repairing TAAA in HTAD?

Marfan TAAA open surgical repair

Author	Ν	Dissecti on (acute)	Resp failure	Persis tent SCI	Bleedin g reop	In- hospital mortality	8-yr survival	8-yr Freedom From reop
Omura 2012 Japan	20	100% (0%)	5%	0%	5%	0%	91%	86%
Coselli 2016 USA	127	100% (9%)	38%	2%	8%	4%	75%	86%
Mommertz 2008 Netherlands	22	100% (0%)	9%	0%	5%	0%	100%	100%
UTH 2014 USA	78	100%	9%	4%	4%	5%	86%	88%

TAAA Modifications

Approach

- CSFD
- DAP
- Moderate
 Hypothermia
- Sequential Clamp
- Reattach patentICA 8-12

Motor

Paraplegia Prevention: OR

- Maintain CSF pressure <10 mmHg:</p>
 - Intermittent manual gravity drainage
- Monitor SSEPs and MEPs
- Systolic BP >130 mmHg
- Maintain Spinal Cord Perfusion Pressure >120 mmHg

Conduct

- Proximal Anastomosis
- ICA reattachment
- Visceral/Renal
- Distal Anastomosis

Curved Ex: 9444 Se: 3 +c Left Extremity Angle: -63.0

DFOV 26.0 cm STND

Â.

kv 120 mA Mod. Rot 0.50s/HE+ 17.5mm/rot 1.2mm 1.75:1/1.2sp 0.8/MIP \$

Ex: Feb 17 2014

P

350/2

Redo Thoracoabdominal Aortic Aneurysm Repair: A Single-Center Experience Over 25 Years

Rana O. Afifi, MD,* Harleen K. Sandhu, MD, MPH,* Amy. E. Trott, PhD, Tom C. Nguyen, MD, Charles C. Miller, PhD, Anthony L. Estrera, MD, and Hazim J. Safi, MD

Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Memorial Hermann Heart & Vascular Institute, Houston, Texas

Background. Aortic disease is a lifelong, progressive illness that may require repeated intervention over time. We reviewed our 25-year experience with open redo thoracoabdominal aortic aneurysm (TAAA) and descending thoracic aortic aneurysm (DTAA) repair. Our objectives were to determine patient outcomes after redo repair of DTAA/TAAA and compare them with nonredo repair. We also attempted to identify the risk factors for poor outcome.

Methods. We reviewed all open redo TAAA and DTAA repairs between 1991 and 2014. Patient characteristics, preoperative, intraoperative variables, and postoperative outcomes were gathered. Data were analyzed by contingency table and by multiple logistic regression.

Results. We performed 1,900 open DTAA/TAAA repairs, with 266 (14%) being redos. Redos were associated with younger age (62 ± 16.4 years vs 64.5 ± 13.4 years, p < 0.02). Reasons for redo DTAA/TAAA were extension of the disease (86.8%), intercostal patch expansion (6.8%), visceral patch expansion (10.9%), infection (4.5%), anastomotic pseudoaneurysm (8.3%), and previous endovascular aortic repair complications

(6.4%). Extent IV TAAA was predominantly involved in redos (42.8% redo vs 14.6% nonredo, p < 0.0001). The early mortality rate was significantly higher in redo (61 of 266 [23%]). Long-term survival was significantly lower among redo compared with nonredo DTAA/TAAAs. A multivariable analysis using the significant risk factors for early death from the risk factors on univariate analysis found four preoperative variables were significant (age >70 years, glomerular filtration rate <48 mL/min per 1.73m², extent III TAAA, and emergency presentation) for predicting early death. In the presence of all four risk factors in a redo patient, a maximal risk of 82% for early death was predicted.

Conclusions. The need for a redo operation in DTAA/ TAAA repair is common and most often presents as an extension of the disease into an adjacent segment. A hybrid or completely endovascular treatment should be considered in high-risk patients.

> (Ann Thorac Surg 2017;103:1421–8) © 2017 by The Society of Thoracic Surgeons

Infective Pseudoaneurysin
 Pseudoaneurysm
 TEVAR Complication

- Ar eu, ysi nal Progression
- Intercestal Patch Enlargement
- Visceral Patch Enlargement

Intercostal Reattac Intercostal Reattachment with a Loop Gi an End Graft

Conduct

- Proximal Anastomosis
- Distal Anastomosis
- Visceral/Renal
- ICA reimplant

STAG Graft

Eur J Vasc Endovasc Surg (2011) 41, 41-47

Operative Outcomes Using a Side-branched Thoracoabdominal Aortic Graft (STAG) for Thoracoabdominal Aortic Repair

P. De Rango^a, A.L. Estrera^{b,*}, C. Miller III^b, T.-Y. Lee^c, K. Keyhani^b, S. Abdullah^b, H. Safi^b

^a Division of Vascular and Endovascular Surgery, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy ^b Cardiothoracic & Vascular Surgery, University of Texas Medical School, Houston, TX, USA ^c Department of Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, South Korea

DeRango EJVES 2011

When to Use the STAG

- TAAA Extent II, III, IV with:
- HTAD (Heritable Thoracic Aortic Disease)
- Young patients (Age < 70 years)
- Displaced Visceral & Renal Vessels
 - (>3 cm displacement)

Prophylactic Repair

- Age
- Comorbidities
- Added Risks
- Risk of Reoperation
- TEVAR

HTAD in TAAA

Use bypasses for Reattachment

- Reversed Elephant trunk
- Frequently have chronic dissection
- Prophylactive repair

Conclusion

- Heritable Thoracic Aortic Disease: genetic specific management
- Open TAAA has good results in HTAD
- Technical considerations
- Although "we don't own the patient", we should own the disease.

Department of Cardiothoracic & Vascular Surgery

McGovern Medical School / The University of Texas Health Science Center at Houston

