

WHAT IT TAKES FOR EVAR TO BE CLINICALLY EFFECTIVE AT A FAIR PRICE

Roger Greenhalgh

Disclosure

Speaker name:

I have the following potential conflicts of interest to report:

- □ Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- \Box Other(s)
- □ I do not have any potential conflict of interest

Perspective for the management of peptic ulcer

Factors associated with rupture

Wyss et al. Annals of Surgery 2010 Nov;252(5):805-12

Covariate	adjusted hazard ratio [95% Cl]	p-value
top neck diameter (cm)	2.07 [0.59 – 7.20]	0.253
neck length (cm)	0.82 [0.28 – 2.38]	0.711
maximum common iliac diameter (cm)	0.97 [0.30 – 3.17]	0.956
complications: endoleaks type I, II with sac growth, III, migration or kinking	8.83 [3.76 – 20.76]	< 0.0001

Secondary rupture 67% mortality

Aneurysm-related deaths according to time since randomisation

Time since randomisation	Endovascular repair (n=626) n/total (rate/100 person-yr)	Open repair (n=626) n/total (rate/100 person-yr)	Adjusted Hazard Ratio (95% CI)	P Value
All Patients	56/626 (1.1)	45/626 (0.9)	1.31 (0.86, 1.99)	0.21
0-6 mo	14/626 (4.6)	30/626 (10.0)	0.47 (0.23 <i>,</i> 0.93)	0.03
> 6 mo- 4 yr	12/599 (0.6)	8/581 (0.4)	1.46 (0.56 <i>,</i> 3.83)	0.44
> 4yr – 8 yr	14/474 (0.9)	4/464 (0.2)	3.11 (0.99 <i>,</i> 9.72)	0.05
> 8 yr	16/339 (1.3)	3/333 (0.2)	5.82 (1.64 <i>,</i> 20.65)	0.006

Aneurysm-related deaths from (per-protocol analysis

Time since randomisation	Endovascular Repair (n=626) n/total (rate/100 person-yr)	Open repair (n=626) n/total (rate/100 person-yr)	Adjusted Hazard Ratio (95% CI)	P Value
All Patients	49/598 (1.0)	29/567 (0.6)	1.76 (1.07, 2.89)	0.03
0-6 mo	9/598 (3.1)	23/567 (8.4)	0.36 (0.15 <i>,</i> 0.85)	0.02
> 6 mo- 4 yr	10/580 (0.6)	2/533 (0.1)	4.36 (0.92, 20.67)	0.06
> 4yr – 8 yr	14/461 (0.9)	2/437 (0.1)	5.80 (1.29 <i>,</i> 26.08)	0.02
> 8 yr	16/331 (1.4)	2/314 (0.2)	9.43 (2.09 <i>,</i> 42.59)	0.004

Causes of death after 8 years

Cause of death	Endovascular repair (n=179)	Open repair (n=154)
Aneurysm rupture before repair (primary)	0	2
Aneurysm-related after repair	3	0
Aneurysm rupture after repair (secondary)	13	
Coronary heart disease	33	35
Stroke	10	15
Other vascular disease	4	12
Cancer, Lung	13	10
Cancer, Other	37	21
Respiratory	29	30
Renal	5	4
Other	31	24
Unknown	1	0

Time to first re-intervention over 15 years

Re-interventions for life-All re-interventions threatening condition Percentage Surviving without Life-threatening Reintervention 0 0 0 00 Percentage Surviving without a Reintervention 0 0 00 08 Endovascular-repair any reintervention, 0.652 (0.591, 0.706) Endovascular-repair life-threatening reintervention, 0.781 (0.715, 0.833) ð Open-repair any reintervention, 0.798 (0.727, 0.852) Open-repair life-threatening reintervention, 0.876 (0.811, 0.920) Years since Randomization Years since Randomization Number at risk Number at risk Endovascular repair 626 Endovascular repair 626 Open repair 626 Open repair 626

Re-interventions for life-threatening complications by time period

Time since randomisation	Endovascular repair (n=626) n/total (rate/100 person-yr)	Open repair (n=626) n/total (rate/100 person-yr)	Adjusted Hazard Ratio (95% CI)	P Value
Overall	85/626 (1.9)	41/626 (0.9)	2.10 (1.42, 3.09)	<0.001
0-6 mo	22/626 (7.4)	19/626 (6.5)	1.08 (0.57, 2.08)	0.809
> 6 mo- 4 yr	27/576 (1.5)	2/570 (0.1)	12.78 (3.01, 54.23)	0.001
> 4yr – 8 yr	15/435 (1.0)	11/450 (0.7)	1.42 (0.64, 3.16)	0.391
> 8 yr	21/306 (2.1)	9/310 (0.8)	2.48 (1.07, 5.75)	0.035

CT and duplex scan follow-up

OVER trial

OVER trial

Endovascular versus open repair of abdominal aortic aneurysm in 15-years' follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial

Rogerth Patel, Michael J Sweeting, Janet T Powell, Roger M Gerenholgh, for the EVAR trial investigators'

www.thelancet.com Vol 388 November 12, 2016

"Rupture after aneurysm repair resulted in 31 deaths in the EVAR group and five in the open-repair group."

(vs 7 and 1 in OVER)

Minneapolis Medical Center

Summary of OVER

"There was no difference in the primary outcome of all-cause mortality but, unlike EVAR 1, late trend favours the EVAR group and aneurysm rupture after repair was uncommon (much lower than in EVAR 1) but mainly in the EVAR group"

CT and duplex scan follow-up

J Vasc Surg. 2015 Jan;61(1):16-22.e1. doi: 10.1016/j.jvs.2014.06.006. Epub 2014 Nov 1.

Follow-up compliance after endovascular abdominal aortic aneurysm repair in Medicare beneficiaries.

Schanzer A¹, Messina LM², Ghosh K³, Simons JP², Robinson WP 3rd², Aiello FA², Goldberg RJ², Rosen AB⁴.

Lifelong imaging follow-up is essential to the safe and appropriate management of patients who undergo EVAR.

Among 19,962 patients who underwent EVAR, the incidence of loss to annual imaging follow-up at 5 years after EVAR was 50%.

J Vasc Surg. 2016 Jun;63(6):1428-1433.e1. doi: 10.1016/j.jvs.2015.12.028. Epub 2016 Mar 19.

Predicting reinterventions after open and endovascular aneurysm repair using the St George's Vascular Institute score.

de Bruin JL¹, Karthikesalingam A², Holt PJ², Prinssen M³, Thompson MM², Blankensteijn JD⁴; Dutch Randomised Endovascular Aneurysm Management (DREAM) Study Group.

The goal of this study was to validate the St George's Vascular Institute (SGVI) score to identify patients at risk for a secondary intervention after elective aneurysm repair.

Information on survival and reinterventions was available for all patients at 5 years postoperatively, for 79% at 6 years, and for 53% at 7 years.

The SGVI score, which is calculated from preoperative AAA morphology using aneurysm and iliac diameter, predictively dichotomised patients into groups at high-risk or low-risk for a secondary intervention.

Vasc Endovascular Surg. 2017 Aug;51(6):417-428. doi: 10.1177/1538574417712648. Epub 2017 Jun 28.

A Systematic Review of Predictors of Reintervention After EVAR: Guidance for Risk-Stratified Surveillance.

Patel SR¹, Allen C¹, Grima MJ¹, Brownrigg JRW¹, Patterson BO¹, Holt PJE¹, Thompson MM¹, Karthikesalingam A¹.

Current surveillance protocols after EVAR are ineffective and costly.

Large preoperative abdominal aortic aneurysm diameter was the most commonly observed risk factor for reintervention after EVAR.

There is a need to refine risk prediction for EVAR failure and to conduct prospective comparative studies of personalised surveillance with standard practice.

By demand of the National Institute for Health Research (NIHR), meet deadline of April 2018

Conduct an economic evaluation of different surveillance schedules following elective repair of an abdominal aortic aneurysm by EVAR

> National Institute for Health Research

Trajectories of aneurysm sac diameter over follow-up by type of event, with loess smoothers superimposed

<u>AIM</u>

To conduct an economic evaluation of different surveillance schedules following elective repair of an abdominal aortic aneurysm by EVAR.

HYPOTHESIS

The surveillance schedule in the EVAR trial and current recommended surveillance schedules are sub-optimal.

