

LONGTERM RESULTS OF BRIDGING STENTS IN FENESTRATED & BRANCHED ENDOVASCULAR REPAIR

Gustavo S. Oderich MD

Chair, Vascular and Endovascular Surgery

Professor of Surgery

Director of Aortic Center

Disclosure

Gustavo S. Oderich

- Consulting: Cook Medical Inc., WL Gore and GE Healthcare
- Research grants: Cook Medical Inc., WL Gore, GE Healthcare
- * All consulting fees and grants paid to Mayo Clinic

STENT GRAFT DESIGNS

FENESTRATED-BRANCHES IN EXTENT I-III TAAAS

Fenestrated and branched endovascular aneurysm repair outcomes for type II and III thoracoabdominal aortic aneurysms

Matthew J. Eagleton, MD, Matthew Follansbee, BS, Katherine Wolski, MPH, Tara Mastracci, MD, and Yuki Kuramochi, BScN, Cleveland, Ohio

2-year Kaplan-Meier Estimates

	Primary patency	Secondary patency
Celiac axis	98%	99%
SMA	97%	99%
R renal artery	94%	99%
L renal artery	93%	99%

FENESTRATED-BRANCHES IN PARARENAL AND EXTENT IV TAAAS

Twelve-year results of fenestrated endografts for juxtarenal and group IV thoracoabdominal aneurysms

Tara M. Mastracci, MD, Matthew J. Eagleton, MD, Yuki Kuramochi, BScN, Shona Bathurst, and Katherine Wolski, MPH, Cleveland, Ohio

606 patients with 1134 renal fenestrated-branches

n (Percent)

Renal stent occlusion 22 (1.9%)

DIRECTIONAL BRANCHES IN TAAAS

Standard off-the-shelf versus custom-made multibranched thoracoabdominal aortic stent grafts

Charlene C. Fernandez, BS, Julia D. Sobel, BS, Warren J. Gasper, MD, Shant M. Vartanian, MD, Linda M. Reilly, MD, Timothy A. M. Chuter, MD, and Jade S. Hiramoto, MD, San Francisco, Calif

133 patients with 235 renal directional branches CUMMULATIVE EVENT RATE

	(Percent)
Mean follow up (days)	849 + 693
Occlusion or stenosis requiring intervention	21 (18%)

RENAL OUTCOMES WITH FENESTRATIONS OR BRANCHES

Mid-term Outcomes of Renal Branches Versus Renal Fenestrations for Thoraco-abdominal Aneurysm Repair

T. Martin-Gonzalez ^a, T. Mastracci ^b, T. Carrell ^c, J. Constantinou ^b, N. Dias ^d, A. Katsargyris ^e, B. Modarai ^c, T. Resch ^d, E. Verhoeven ^e, S. Haulon ^a, ^{*}

- 449 patients with 856 renal arteries
 - 445 branches and 411 fenestrations
- Mean follow up, 19 months
- Renal branch stents ~60% selfexpandable and 40% BES

2-year freedom from	Fenestrations	Branches	Р
Occlusion	97%	90%	0.01
Reintervention	99%	92%	0.03
Branch instability	98%	86%	0.01
>20% decline eGFR	37%	43%	NS
Mortality	82%	73%	NS

PHYSICIAN PREFERENCE & TYPE OF INCORPORATION

FENESTRATIONS

BRANCHES

VARIATIONS IN USE OF DIRECTIONAL BRANCHES

SELECTION OF FENESTRATIONS OR BRANCHES

BRIDGING STENT OPTIONS

PROBLEMS WITH F-BEVAR LITERATURE

- Variations on definitions of end-points
- Physician bias towards fenestrations or branches
- Significant variations on selection of bridging stent type
- Underreporting on bridging stent type
- Lack of reporting on key outcomes such as primary patency, target vessel instability, endoleaks and secondary interventions

TARGET VESSEL INSTABILITY

Durability of branches in branched and fenestrated endografts

Tara M. Mastracci, MD, Roy K. Greenberg, MD, Matthew J. Eagleton, MD, and Adrian V. Hernandez, PhD, Cleveland, Olsio

- Composite of any branch-related event:
 - Death or aneurysm rupture
 - Occlusion
 - Reintervention for:

Type IC or IIIC endoleak

Stenosis or kink

Disconnection, fracture or integrity issues

REVISED ENDOLEAK CLASSIFICATION (SVS REPORTING STANDARD)

2018 VASCULAR

Target Artery Outcomes After Branched and Fenestrated Endovascular Repair of Pararenal and Thoracoabdominal Aortic Aneurysms in the US IDE Experience

Darren B. Schneider, Gustavo S. Oderich, Mark A. Farber, Andres Schanzer, Adam W. Beck, Carlos H. Timaran, Matthew P. Sweet, and Emanuel R. Tenorio

On Behalf of the United States Fenestrated and Branched Research Consortium Investigators

Disclosures

DBS: consulting and research grants from Cook, WL Gore, Endologix and Medtronic; GSO: consulting and research grants from Cook and WL Gore paid to Mayo Clinic; MAF: consulting and research grants from Cook, WL Gore, Endologix and Medtronic; AS: consulting and research grants from Cook; MPS: none; ERT: none

US FENESTRATED-BRANCHED CONSORTIUM

- 10 US sites
- Prospective, physiciansponsored studies
- Monitored, audited
- Similar device design with selective use of fenestrations and branches

PATIENTS

661 patients enrolled

(January 1st, 2018)

232 pararenal (36%)

221 Extent 4 TAAA (33%)

STENT DESIGN

Off-the-Shelf
Cook t-Branch®

t- Branch = 63 (10%)

Patient Specific

Fenestrations or branches

n = 597 (90%)

SELECTION OF FENESTRATIONS OR BRANCHES

2428 target visceral arteries (3.8/patient)*

	Overall n = 2428	Pararenal n = 801	Type IV n = 881	Type I-III n = 746	P value
	n (Perc	ent) or Mean	± Standard De	eviation	
Vessels per patient	3.8±0.6	3.8±0.6	3.8±0.6	3.8±0.7	0.8
Fenestrations	1701 (70)	671 (84)	734 (83)	296 (40)	<0.001
Directional branches	631 (26)	34 (4)	147 (17)	450 (60)	<0.001
Double-wide scallops	96 (4)	96 (12)	0 (0)	0 (0)	<0.001

^{*} All patients with <4-vessels had variant anatomy (e.g. single kidneys, pelvic transplants, celio-mesenteric trunks, etc)

STENT SELECTION FOR FENESTRATIONS

1679 target visceral arteries incorporated with fenestrations (2.5 vessels/ patient)

	Overall n = 1679	Pararenal n = 660	Type IV n = 729	Type I-III n =290	P value
		n (Pe	ercent)		
iCAST stent	1648 (98)	649 (98)	715 (98)	284 (98)	0.89
Fluency stent	3 (0.2)	0	2 (0.3)	1 (0.3)	0.36
Viabahn stent	8 (0.5)	1 (0.1)	4 (0.5)	3 (1)	0.17
VBX stent	3 (0.2)	2 (0.3)	0	1 (0.3)	0.31
Others	17 (1)	8 (1.2)	8 (1)	1 (0.3)	0.44
Adjunctive bare metal	470 (28)	153 (23)	234 (32)	83 (29)	0.001

STENT SELECTION FOR DIRECTIONAL BRANCHES

625 target visceral arteries incorporated with branches (1 vessel/ patient)

	Overall n = 625	Pararenal n = 34	Type IV n = 146	Type I-III n =445	P value
		n (Pe	ercent)		
iCAST stent	155 (25)	17 (50)	38 (26)	100 (22)	0.002
Fluency stent	107 (17)	0	27 (18)	80 (18)	0.02
Viabahn stent	282 (45)	16 (47)	76 (52)	190 (43)	0.13
VBX stent	63 (10)	0	0	63 (14)	<0.001
Others	18 (3)	1 (3)	5 (3)	12 (3)	0.9
Adjunctive bare metal	258 (41)	6 (18)	68 (47)	184 (41)	0.009

EARLY OUTCOMES (<30 DAYS)

	Overall n = 661	Pararenal n = 232	Extent IV n = 221	Extent I-III n = 208	P value
		n (Per	cent)		
Any Mortality	13 (2)	3 (1)	5 (2)	5 (2)	0.82
Any MAE	97 (15)	26 (11)	33 (15)	38 (18)	0.11
EBL >1L	29 (5)	6 (3)	9 (4)	14 (7)	0.10
Acute Kidney injury	36 (5)	7 (3)	14 (6)	15 (7)	0.11
Myocardial infarction	12 (2)	4 (2)	7 (3)	1 (0.4)	0.11
Respiratory failure	20 (3)	2 (1)	10 (5)	8 (4)	0.053
Paraplegia	11 (2)	1 (0.4)	1 (0.4)	9 (4)	<0.001
Stroke	12 (2)	3 (1)	4 (2)	5 (2)	0.68
Bowel ischemia	22 (3)	5 (2)	10 (5)	7 (3)	0.37

TARGET VESSEL INSTABILITY

TARGET VESSEL INSTABILITY FOR FENESTRATIONS vs BRANCHES

PRIMARY PATENCY FOR FENESTRATIONS vs BRANCHES

TARGET VESSEL INSTABILITY BY VESSEL

PREDICTORS OF TARGET VESSEL INSTABILITY

	Odds	<u>95% CI</u>		P value
	Ratio	lower	upper	· value
R renal artery	2.001	1.21	3.317	0.0071
L renal artery	1.862	1.11	3.112	0.0176
Chronic Dissection TAAA	3.141	1.69	5.836	0.0003
Celiac Stenosis ≥ 50%	2.181	1.32	3.603	0.0023
Number of target vessels	1.722	1.11	2.682	0.0163

RENAL VESSEL INSTABILITY FOR FENESTRATIONS vs BRANCHES

TARGET VESSEL INSTABILITY BY ANEURYSM EXTENT

RENAL ARTERY PRIMARY PATENCY BY ANEURYSM EXTENT

RENAL ARTERY ENDOLEAK TYPE IC/IIIC BY ANEURYSM EXTENT

RENAL ARTERY REINTERVENTION BY ANEURYSM EXTENT

PREDICTORS OF RENAL VESSEL INSTABILITY

	Odds <u>95% CI</u>		P value	
	Ratio	lower	upper	
Number of target vessels	2.1	1.3	3.6	0.005
Extent I-III TAAAs	1.9	1.1	3.3	0.025

AATS AORTIC SYMPOSIUM 2018

April 26 - 27, 2018

New York Hilton Midtown New York, NY, USA

Update on the first 250 patients enrolled in a F-BEVAR prospective, non-randomized study

Gustavo S. Oderich MD, Emanuel Tenorio MD PhD, Jan Hofer RN, Jean Wigham RN, Stephen Cha MS and Thanila A. Macedo MD

Division of Vascular and Endovascular Surgery and Departments of Radiology, Epidemiology and Biostatistics

TYPE OF INCORPORATION

954 renal-mesenteric arteries (3.8/patient) 211 patients (85%) had ≥ 4-vessels

	Overall n = 250	Pararenal n = 91	Type IV n = 63	Type I-III n = 96	P value
	n (Perd	cent) or Mean :	± Standard De	eviation	
Total target vessels	954	353	246	355	
Vessels per patient	3.9±0.5	3.9±0.5	3.9 ± 0.5	3.8±0.5	0.4
Fenestrations	631 (66)	308 (87)	218 (89)	105 (30)	<0.001
Directional branches	284 (30)	6 (2)	28 (11)	250 (70)	<0.001
Double-wide scallops	39 (4)	39 (11)	0	0	<0.001

CHOICE OF BRIDGING STENT

VBX BALLOON-EXPANDABLE STENT-GRAFT

	Viabahn	VBX
Length	5, 7.5, 10-cm	39, 59, 79 mm
Diameter	6-9 mm	5-9 mm (16)
Sheath profile	7-11 Fr	7-8 Fr

FLEXIBILITY

16MM FLARE

RENAL DIRECTIONAL BRANCHES: PRIMARY PATENCY

RENAL DIRECTIONAL BRANCHES: SECONDARY PATENCY

RENAL DIRECTIONAL BRANCHES: INSTABILITY

RENAL DIRECTIONAL BRANCHES: TYPE IC AND IIIC ENDOLEAKS

RENAL DIRECTIONAL BRANCHES: SECONDARY INTERVENTIONS

CONCLUSION

- There is controversy on optimal stent design and bridging stent selection
- Fenestrated-branches aligned by balloon-expandable covered stents have consistently shown high patency rates and low rates of target vessel instability
- Although fenestrated branches have shown superior patency in many series, directional branches have an important role and should be considered in patients with proper anatomy
- Early results with newer bridging stent-grafts are promising, but the jury is out on the ideal stent for branch alignment

