

Long-Term Results of Frozen Elephant Trunk and Total Arch Replacement for Type A Aortic Dissection in Marfan Syndrome

Wei-Guo Ma, Yu Chen, Ai-Hua Zhi, Lingeng Lu, Jun Zheng, Yong-Min Liu, Jun-Ming Zhu,
John A. Elefteriades and Li-Zhong Sun

Beijing Anzhen Hospital of Capital Medical University, Beijing, China; Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Beijing, China; Aortic Institute at Yale-New Haven, Yale School of Medicine, New Haven, CT

No Conflict of Interest

Surgery for Marfan Patients With Acute Type A Dissection Using a Stented Elephant Trunk Procedure

Decreases potential for

catastrophic distal

aortic rupture

Capitalizes on young

mean age at initial

presentation

Acceptable morbidity

and mortality are

achievable with a

standardized approach

EARLY AGGRESSIVE

APPROACH: TAR+FET

LiZhong Sun, MD,* RuiDong Qi, MD,* Qian Chang, MD, JunMing Zhu, MD,

YongMin Liu, MD, Chu LiangXin Tian, MD, and Departments of Cardiovascular Su College, Chinese Academy of Med

Background. The purpose of efficacy of total arch replaceme elephant trunk implantation acute Stanford type A aortic aortic arch.

Methods. Between January 20 secutive Marfan patients (4 fema A aortic dissection involving total arch replacement combine stented elephant trunk. Aortic of iliac artery was seen in 10 patie aorta in 3 patients. Ages ranged 39 ± 13). Computed tomograph residual false lumen in the desc

Results. All patients surviv from hospital. One patient w nominate artery suffered cereb

Repair of acute type A aortic Issues regarding aortic enla tion after repair of acute type A d particularly for patients with M replacement of the arch combin trunk for Stanford type A aor thrombosis of the false lumer remaining dissected aorta, and for late reoperation [2]. In this reviewed our experience of total combined with implantation of a patients with Marfan syndrom dissection involving the aortic a

Patients and Methods

A consecutive series of 13 Mar 9 male) aged 17 to 65 years (me

Accepted for publication Aug 11, 2008.

*Drs Sun and Qi contributed equally to

Address correspondence to Dr Sun, De

gery, Cardiovascular Institute and Fuwai Ho jing, 100037, China; e-mail: slzh_2005@yahoo.com.cn.

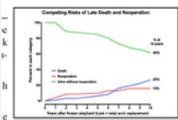
© 2008 by The Society of Thoracic Surgeons Published by Elsevier Inc.

implantation are listed in Table 1.

0003-4975/08/\$34.00 doi:10.1016/j.athoracsur.2008.08.026

ACQUIRED: AORTA

Long-term outcomes of frozen elephant trunk for type A aortic dissection in patients with Marfan syndrome



Spares patients who do not develop distal aortic involvement

Lower immediate risk of morbidity and mortality

Long-term stent-graft durability and late complications not well characterized in the young MFS population

ulat A. Ziganshin, MD, A. Elefteriades, MD, and

Incidences of reoperation, death, and event-free survival were 15%, 25% and 60%, respectively at 10 years.

Central Message

aortic dissection, the frozen elephant trunk and total arch replacement technique has achieved low operative mortality, favorable long-term survival and freedom from reoperation.

Perspective

The extent of surgical repair and the use of the frozen elephant trunk (FET) technique are controversial for type A dissection in Marfan syndrome. This study found favorable early and long-term results via total arch replacement with FET. A Bentall procedure during FET was predictive of better late survival and increased risk for reoperation. This extensive surgical approach is recommended in such a setting.

See Editorial Commentary page 1190.

2017;154:1175-89)

CONSERVATIVE APPROACH: LIMITED ARCH REPAIR ± DISTAL AORTIC REPAIR, AS **NEEDED**

ation. These results argue tavorably for the use of the FET + TAR tech

the management of TAAD in patients with MFS. (J Thorac Cardiovasc Surg

In 106 Marfan syndrome patients with type A

See Editorial page 1169.

Experience in Beijing

- 1993-2018, > 600 patients with Marfan syndrome
- 1996-2017, 223 type A dissections
 - Acute, 141
 - Chronic, 82
- Since 2003, TAR + FET
- One-stage vs two stage repair for acute type I dissection
 - Similar early and late survival
 - Two-stage repair:

 distal aortic dilation
 - One-stage repair: ↓ distal aortic rupture, dilation and reintervention

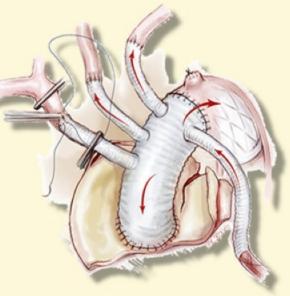
Objectives

- To evaluate the long-term outcomes in terms of survival and reoperation in 172 patients with Marfan syndrome
- To analyze the temporal changes of the distal aorta after FET with respect to the false lumen, true lumen and maximum aortic size, growth rates, dilation and remodeling
- To identify risk factors for late adverse events, including distal aortic dilation, reoperation and death

Profile of Patients

Variable	Total (n = 172, %)	Acute (n = 94)	Chronic (n = 78)	P value
Age (year)	34.6 ± 9.3	34.2 ± 9.6	35.0 ± 9.1	.602
Male	121 (70.3%)	72 (76.6%)	49 (62.8%)	.049
Hypertension	59 (34.3%)	32 (34.0%)	27 (34.6%)	.937
Family history of aortic dissection	71 (41.3%)	37 (39.4%)	34 (43.6%)	.575
History of proximal aortic surgery	29 (16.9%)	8 (8.5%)	21 (26.9%)	.001
Malperfusion syndrome	14 (8.1%)	11 (11.7%)	3 (3.8%)	.061
Preoperative aortic diameter (mm)				
Aortic sinus	63.4 ± 13.4	59.3 ± 11.7	69.2 ± 13.7	<.001
Aortic arch	35.8 ± 11.6	33.8 ± 10.5	38.2 ± 12.4	.020
Proximal descending aorta	37.3 ± 11.6	35.1 ± 10.7	40.2 ± 12.0	.006
Mid-descending aorta	31.0 ± 9.3	29.3 ± 8.3	33.0 ± 10.2	.017
Diaphragm	30.2 ± 9.6	28.2 ± 7.8	32.8 ± 11.1	.005
Renal arteries	26.5 ± 8.9	24.8 ± 7.4	28.7 ± 10.1	.007
Arch vessel involvement	165 (95.9%)	91 (96.8%)	74 (94.9%)	.522

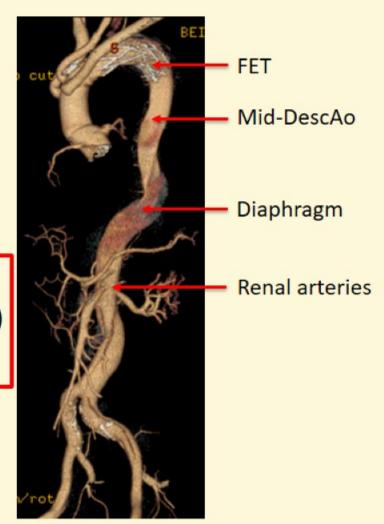
Surgical Indications and Techniques


Indications

- Intimal tear located in arch or descending aorta
- Aneurysm of the arch or proximal descending aorta (> 40 mm in diameter)
- dissection, aneurysm, or occlusion of arch vessels

Technical Details

- · Right axillary cannulation
- Unilateral antegrade cerebral perfusion
- Hypothermic circulatory arrest at 20-25°C
- Arch transected between LCA and LSCA
- Distal first strategy

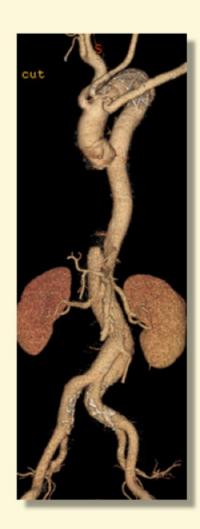


Early Mortality and Morbidity

Mortality and Morbidity	Total (n = 172, %)	Acute (n=94)	Chronic (n=78)	P value
Operative mortality	14 (8.1%)	7 (7.4%)	7 (9.0%)	.715
Operative complications	39 (22.7%)	22 (23.4%)	17 (21.8%)	.802
Spinal cord injury	2 (1.2%)	2 (2.1%)	0	.195
Stroke	5 (2.9%)	3 (3.2%)	2 (2.6%)	.807
Low cardiac output	7 (4.1%)	4 (4.3%)	3 (3.8%)	.892
Lower limb ischemia	10 (5.8%)	3 (3.2%)	7 (9.0%)	.107
Acute renal failure	6 (3.5%)	3 (3.2%)	3 (3.8%)	.816
Distal aortic rupture	2 (1.2%)	2 (2.1%)	0	.195
Re-exploration for bleeding	10 (5.8%)	5 (5.3%)	5 (6.4%)	.761

Follow-Up and Endpoints

- Follow-up: 98.7% (156/158) for 6.2 ± 3.3 years
- Clinical endpoints (Cox regression)
 - Late death
 - Distal aortic reoperations
- Imaging follow-up
 - Aortic dilatation
 - Maximal aortic diameter (DMax) of > 50 mm
 (45 mm for family history of aortic surgery or rupture)
 - 2) An average growth rate of > 5 mm/year
 - Trends of changes in TL, FL and maximal aortic size (mixed linear model)
 - False lumen obliteration

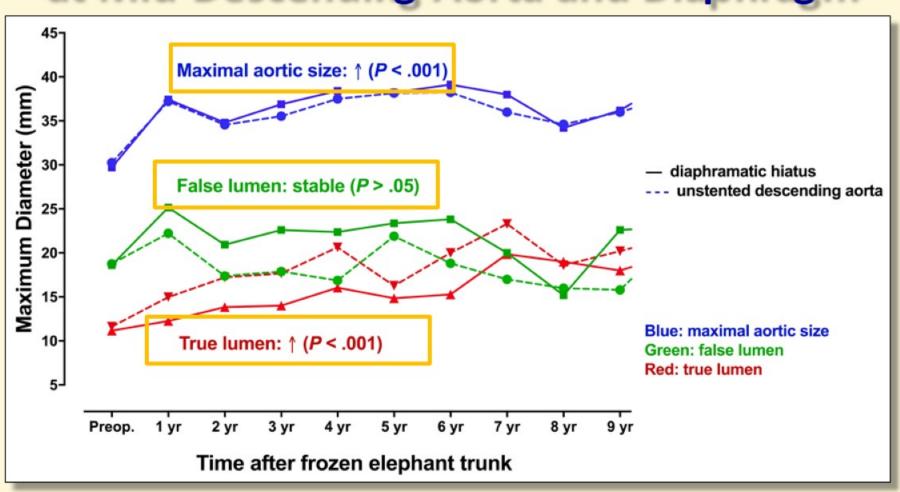

False Lumen Obliteration and Remodeling

False lumen status before discharge

Aortic segments	Complete (%)	Partial (%)	Patent (%)
Frozen elephant trunk	86.1	12.0	1.9
Mid-descending aorta	39.8	22.2	38.0
Diaphragmatic hiatus	25.9	14.6	59.5
Renal arteries	20.9	12.0	67.1

Complete aortic remodeling on latest CT

- FET: 56.4% (88/156)
- Mid-descending aorta: 28.8% (45/156)



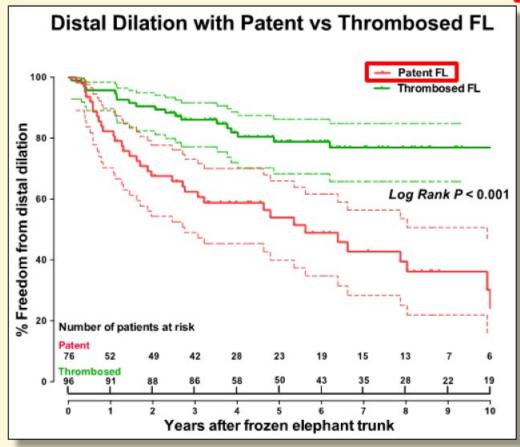
Trend of Changes in True Lumen, False Lumen and Maximal Aortic Size over Time

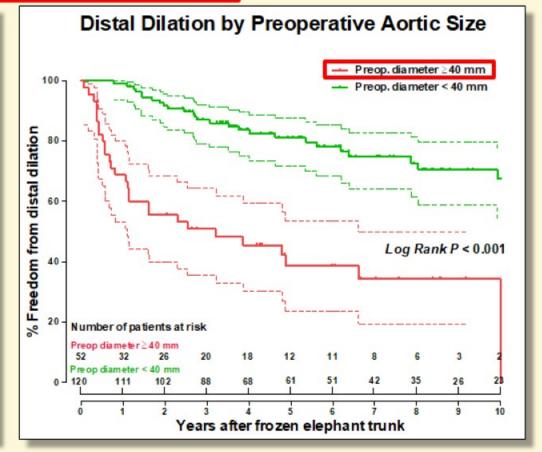
Aortic segments	True lumen		False lumen			Maximal aortic size			
	Trend	β	P value	Trend	β	P value	Trend	β	P value
Frozen elephant trunk	↑	2.102	<.001	\downarrow	-2.959	<.001	S	-0.043	.924
Mid-descending aorta	↑	1.304	<.001	S	-0.072	.890	1	1.308	.001
Diaphragmatic hiatus	↑	0.725	<.001	S	0.910	.076	1	1.698	<.001
Renal arteries	↑	0.684	<.001	S	0.706	.104	S	1.249	.752

In linear mixed modeling, \uparrow , expansion (P < 0.05); \downarrow , shrinkage (P < 0.05); S, stable (P > 0.05); β , relative effect of time

Trends of Changes in Aortic Size, True and False Lumen at Mid-Descending Aorta and Diaphragm

Growth Rates and Dilation

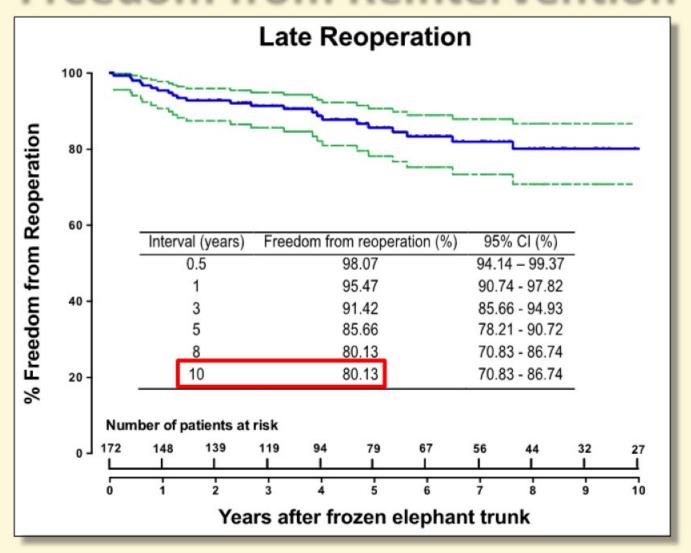

Aortic segment	Whole cohort (n = 120)	Acute (n = 69)	Chronic (n = 51)	P value
Frozen elephant trunk (FET)	0.4	-0.6	1.8	.002
Unstented descending aorta (DA)	2.8	3.5	2.0	.145
Diaphragm hiatus (DH)	3.6	4.5	2.2	.015
Renal arteries (RA)	2.6	3.3	1.7	.031

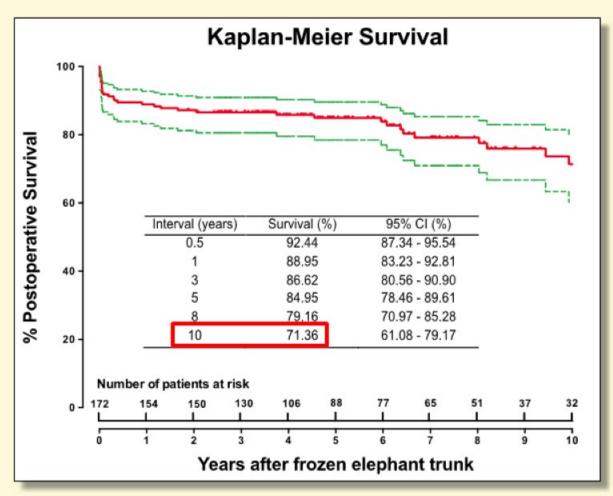

Maximal size of distal aorta

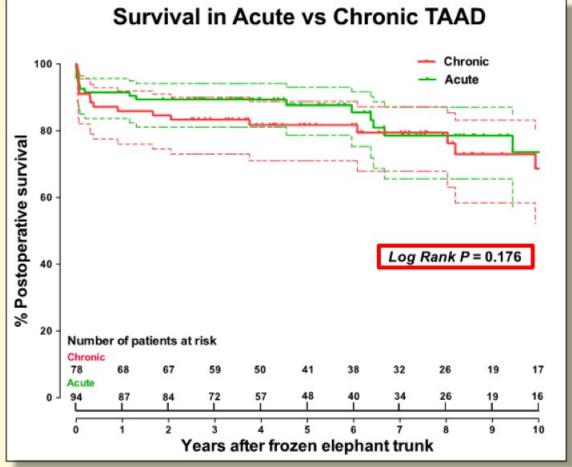
- Non-dilated: 63.5% (99/156)
- Dilated: 36.5% (57/156)
- Complete remodeling: 33 TAADS confined to mid-descending aorta

Freedom from Aortic Dilation

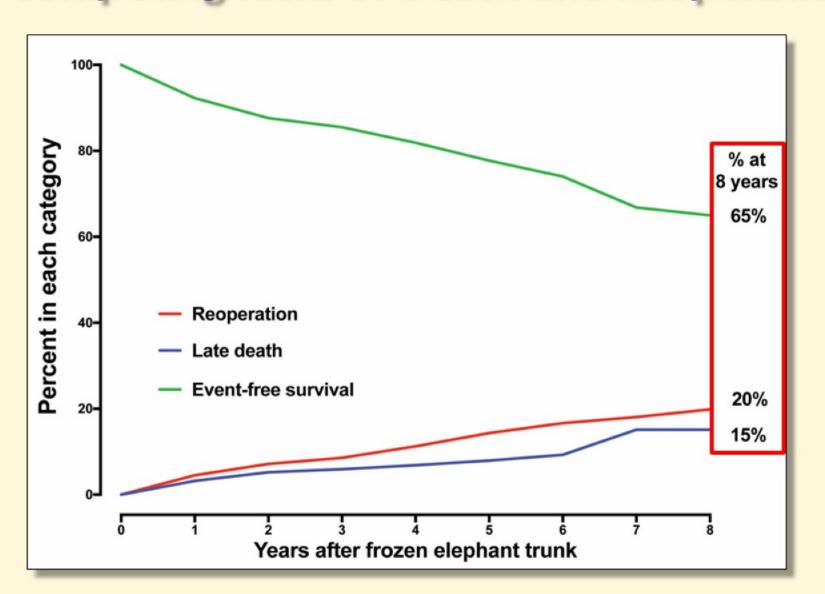
At 5 years: 69% (95% CI 60.6-76.0%); 57.6% at 10 years (95% CI 46.9-66.8%)




Long-Term Outcomes


Variable	Total (n = 172, %)	Acute (n=94)	Chronic (n=78)	P value
Late death	22 (12.8%)	11 (11.7%)	11 (14.1%)	.639
Distal aortic rupture	9 (5.2%)	4 (4.3%)	5 (6.4%)	.528
Heart failure and arrhythmia	3 (1.7%)	1 (1.1%)	2 (2.6%)	.454
Non-cardiac cause	10 (5.8%)	6 (6.4%)	4 (5.1%)	.726
Late complications	8 (4.7%)	8 (14.0%)	8 (4.7%)	.635
Proximal stent leakage	2 (1.2%)	1 (1.1%)	1 (1.3%)	.894
Distal end of FET entering false lumen	4 (2.3%)	2 (2.1%)	2 (2.6%)	.816
Distal reintervention	23 (13.4%)	14 (14.9%)	9 (11.5%)	.520
TAAAR	19 (11.0%)	12 (12.8%)	7 (9.0%)	.430
TEVAR	4 (2.3%)	2 (2.1%)	2 (2.6%)	.450

Freedom from Reintervention



Kaplan-Meier Survival

Competing Risks of Death and Reoperation

Risk Factors for Dilation, Reoperation and Death

Endpoint/Risk factors	Hazard Ratio	95% Confidence Interval	P value
Distal aortic dilatation			
Patent false lumen in descending aorta	3.88	1.99 - 7.57	<.001
Preoperative distal DMax (mm)	1.11	1.08 - 1.14	<.001
FET diameter < 26 mm	3.98	1.90 - 8.33	<.001
Male gender	3.35	1.52 - 7.37	.003
Distal aortic reoperation			
Patent false lumen in descending aorta	3.36	1.28 - 8.85	.014
Preoperative distal DMax (mm)	1.07	1.03 - 1.10	<.001
Late death			
Patent false lumen in descending aorta	3.31	1.03 - 10.67	.045
Preoperative distal DMax ≥ 45 mm	3.29	1.14 - 9.46	.027

Conclusions

- In Marfan patients with type A dissection, <u>FET could induce favorable</u> <u>aortic remodeling</u> by expanding the true lumen, and decreasing or stabilizing the false lumen, which led to satisfactory survival and low reoperation rates in the long term
- Our experience <u>adds clinical and imaging evidence</u> supporting the use of the frozen elephant trunk technique for type A dissection in patients with Marfan syndrome
- Future efforts should be aimed at <u>reducing false lumen patency</u> to improve long-term outcomes

Looking Forward: Metalize the Distal Aorta?

