Complex endografts vs.
false lumen occlusion
in chronic AD

P. M. Kasprzak
Department of Vascular Surgery
Endovascular Surgery
University Hospital Regensburg, Germany
Head Univ.-Prof. Dr. K. Pfister

Disclosures Prof. Dr. Kasprzak (grants, speaker fee, development)
Cook, Gore, Vascutek, Bard, Medtronic, Maquet, UCB, Bentley
Case presentation

M, 51
01.12.13 type A AD
02.12.13 ao-asc repair
postOP 6.3 cm TAAA
M, 51
Type A aortic dissection
02.12.13 ao-asc repair
postOP 6.3 cm TAA

16.12.13 TEVAR
(Cook Zenith 26-32-162; distal: Zenith 34x152 and Zenith Dissection Stent 36/123)
TAA progression after TEVAR i cTBAD

- Retrograde perfusion of the false lumen over distal tears
- Often conditioned by outflow through open intercostal arteries
- Stiff membrane prevents remodeling after TEVAR
- Diameter progression
- Exclusion of proximal endoleaks after TEVAR (Ia, II-LSA, III)
Distribution of intimomedial tears in patients with type B aortic dissection

Khoynezhad A. et al. (2010) JVS 52;3:562-8

37% 52% 66% 81% (Celiac at 282mm)
Dissection Type B with Aneurysm Reno-mesenterial after TEVAR und EVAR
Dissection Type B with infrarenal aortic occlusion and perfusion of lower extremities through false lumen.
• TBAD - false lumen expansion requiring reintervention 30%
 Nienaber CA et al. Randomized comparison of strategies for type B aortic dissection: INSTEAD. Circulation 2009

• Complete false lumen thrombosis in 40%

• False lumen (dissection) stable 30%

• Post-TEVAR aneurysm in 35%
 Scali ST et al. Efficacy of TEVAR for cTBAD with aneurysmal degeneration JVS 2013
TEVAR?

A Systematic Review of Mid-term Outcomes of Thoracic Endovascular Repair (TEVAR) of Chronic Type B Aortic Dissection

- 527 Pt (17 Studies)
- Technical Success 59.1-100%
- 8% Ongoing Aneurysmal Dilatation
False Lumen Embolization after TEVAR

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Loubert</td>
<td>balloons, thrombin, occluders</td>
</tr>
<tr>
<td>2012</td>
<td>Hofferberth</td>
<td>coils, cyanoacrylate glue</td>
</tr>
<tr>
<td>2013</td>
<td>Kölbel</td>
<td>candy-plug</td>
</tr>
<tr>
<td>2014</td>
<td>Idrees, Roselli</td>
<td>iliac occluders</td>
</tr>
<tr>
<td>2015</td>
<td>Mendes</td>
<td>18-22mm plugs</td>
</tr>
<tr>
<td>2017</td>
<td>Wojtaszek</td>
<td>Amplatzer</td>
</tr>
<tr>
<td>2018</td>
<td>Rohlffs, Kölbel</td>
<td>2. generation candy-plug</td>
</tr>
</tbody>
</table>
The Candy-Plug Technique: Technical Aspects and Early Results of a New Endovascular Method for False Lumen Occlusion in Chronic Aortic Dissection

Fiona Rohlffs, MD¹, Nikolaos Tsilimparis, MD¹, Beatrice Fiorucci, MD¹,², Franziska Heidemann, MD¹, Eike Sebastian Debus, MD, PhD¹, and Tilo Kölbl, MD, PhD¹

Abstract

Purpose: To describe the technical aspects and early results of the Candy-Plug technique for endovascular false lumen occlusion in chronic aortic dissection. Methods: A retrospective single-center study analyzing 18 consecutive patients (mean age 63 years, range 44–76; 16 men) with thoracic false lumen aneurysm in chronic aortic dissection. All patients underwent thoracic endovascular aortic repair with false lumen occlusion using the Candy-Plug technique. Primary endpoints consisted of technical success (successful deployment) and clinical success (no false lumen backflow). Secondary endpoints included 30-day mortality and morbidity as well as aortic remodeling during follow-up. Results: Technical success was 100%. Additional intraprocedural false lumen embolization at the Candy-Plug level was needed in 1 patient due to persisting false lumen backflow on the final angiogram (clinical success 94%). There were no intraprocedural complications. In the perioperative period, there were 3 minor complications: transient mild spinal cord ischemia, cervical hematoma after carotid-subclavian bypass, and a common femoral artery pseudoaneurysm. No deaths or reinterventions occurred. Complete distal false lumen occlusion was present on postoperative computed tomography in 15 patients, while 3 had minor contrast enhancement in the distal false lumen. Over a mean 9-month follow-up (range 0–26), 1 patient died due to rupture. Follow-up >6 months was available in 10 patients (mean 14.7 months, range 7–26): 7 patients showed aortic remodeling, while aneurysm size was stable in 3 patients. Conclusion: The Candy-Plug technique is a feasible endovascular method to achieve false lumen occlusion and aortic remodeling in chronic aortic dissection. It is associated with low morbidity and mortality due to its minimal invasiveness.
The Candy-Plug Technique: Technical Aspects and Early Results of a New Endovascular Method for False Lumen Occlusion in Chronic Aortic Dissection

Fiona Rohlffs, MD¹, Nikolaos Tsilimparis, MD¹, Beatrice Fiorucci, MD¹,², Franziska Heidemann, MD¹, Eike Sebastian Debus, MD, PhD¹, and Tilo Kölbl, MD, PhD¹

Abstract

Purpose: To describe the technical aspects and early results of the Candy-Plug technique for endovascular false lumen occlusion in chronic aortic dissection. Methods: A retrospective single-center study analyzing 18 consecutive patients (mean age 63 years, range 44–76; 16 men) with thoracic false lumen aneurysm in chronic aortic dissection. All patients underwent thoracic endovascular aortic repair with false lumen occlusion using the Candy-Plug technique. Primary endpoints consisted of technical success (successful deployment) and clinical success (no false lumen backflow). Secondary endpoints included 30-day mortality and morbidity as well as aortic remodeling during follow-up. Results: Technical success was 100%. Additional intraprocedural false lumen embolization at the Candy-Plug level was needed in 1 patient due to persisting false lumen backflow on the final angiogram (clinical success 94%). There were no intraprocedural complications. In the perioperative period, there were 3 minor complications: transient mild spinal cord ischemia, cervical hematoma after carotid-subclavian bypass, and a common femoral artery pseudoaneurysm. No deaths or reinterventions occurred. Complete distal false lumen occlusion was present on postoperative computed tomography in 15 patients, while 3 had minor contrast enhancement in the distal false lumen. Over a mean 9-month follow-up (range 0–26), 1 patient died due to rupture. Follow-up >6 months was available in 10 patients (mean 14.7 months, range 7–26): 7 patients showed aortic remodeling, while aneurysm size was stable in 3 patients. Conclusion: The Candy-Plug technique is a feasible endovascular method to achieve false lumen occlusion and aortic remodeling in chronic aortic dissection. It is associated with low morbidity and mortality due to its minimal invasiveness.
The Candy-Plug Technique: Technical Aspects and Early Results of a New Endovascular Method for False Lumen Occlusion in Chronic Aortic Dissection

Fiona Rohlffs, MD, Nikolaos Tsilimparis, MD, Beatrice Fiorucci, MD, Franziska Heidemann, MD, Eike Sebastian Debus, MD, PhD, and Tilo Kölbl, MD, PhD

Abstract

Purpose: To describe the technical aspects and early results of the Candy-Plug technique for endovascular false lumen occlusion in chronic aortic dissection. Methods: A retrospective single-center study analyzing 18 consecutive patients (mean age 63 years, range 44–76; 16 men) with thoracic false lumen aneurysm in chronic aortic dissection. All patients underwent thoracic endovascular aortic repair with false lumen occlusion using the Candy-Plug technique. Primary endpoints consisted of technical success (successful deployment) and clinical success (no false lumen backflow). Secondary endpoints included 30-day mortality and morbidity as well as aortic remodeling during follow-up. Results: Technical success was 100%. Additional intraprocedural false lumen embolization at the Candy-Plug level was needed in 1 patient due to persisting false lumen backflow on the final angiogram (clinical success 94%). There were no intraprocedural complications. In the perioperative period, there were 3 minor complications: transient mild spinal cord ischemia, cervical hematoma after carotid-subclavian bypass, and a common femoral artery pseudoaneuysm. No deaths or reinterventions occurred. Complete distal false lumen occlusion was present on postoperative computed tomography in 15 patients, while 3 had minor contrast enhancement in the distal false lumen. Over a mean 9-month follow-up (range 0–26), 1 patient died due to rupture. Follow-up 26 months was available in 10 patients (mean 14.7 months, range 7–26). 7 patients showed aortic remodeling while aneurysm size was stable in 3 patients. Conclusion: The Candy-Plug technique is a feasible endovascular method to achieve false lumen occlusion and aortic remodeling in chronic aortic dissection. It is associated with low morbidity and mortality due to its minimal invasiveness.

2 patients received F/BEVAR
Experience Regensburg/Nuremberg (N=71) (01/2008-04/2017)

• 53/71 after previous surgery:
 – Open surgery for type A (N=15)
 – Open Surgery/TEVAR for type B (N=38)
Perioperative Results

• Technical Success: N=68/71 (95.8%)
 1 Conversion; 2 catheterization failures (LRA/SMA)

• 30-day Mortality: N=4 (5.6%)

• SCI
 Paraplegia N=2 (2.8%)
 Temporary Paraparesis Uni-/Bilateral N=9 (12.7%)
Freedom from Reintervention

80.7 ± 5.3% 1 Year

52.6 ± 8.0% 3 Years
Cumulative Survival

84.7 ± 4.5% 1 Year

70.0 ± 6.7% 3 Years
False Lumen Thrombosis

41/48 (85.4%) Patients that completed 1 year FU

Post-op

CT 2 years

Mean Aneurysm Sac Regression 9.2 ± 8.8mm
Conclusions:

• Complex endografts are a realistic option with high technical success in treatment of thoracoabdominal aneurysms complicating chronic dissection type B but high percentage of reinterventions.

• False lumen occlusion is a valuable option in growing TAA due to retrograde perfusion after TEVAR in acute and chronic aortic dissection type B.

• Each of both methods of treatment is indicated depending on the form of aneurysmatic dilatation (TAA vs. TAAA) and should be used complementary.